Abstract
<abstract><p>For an abelian group $ G $ and a positive integer $ n $, we set $ M(G, n) $ as a Moore space of type $ (G, n) $. In this paper, for a prime number $ p $, we are interested in the structure of homotopy comultiplications on the localization $ L_{(p)} $ of a wedge $ L: = \mathbb S^m \vee M(G, n) $ of the homotopy spheres and the Moore spaces for $ 2 \leq m < n $. We also provide a list of examples to examine the phenomena of homotopy comultiplications on $ L_{(p)} $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference46 articles.
1. H. Hopf, Eine verallgemeinerung der euler-poincaréschen formel, in Selecta Heinz Hopf, (1964), 5–13. https://doi.org/10.1007/978-3-662-25046-4_2
2. M. Arkowitz, Introduction to Homotopy Theory, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-7329-0_1
3. P. D. Mitchener, B. Norouzizadeh, T. Schick, Coarse homotopy groups, Math. Nachr., 293 (2020), 1515–1533. https://doi.org/10.1002/mana.201800523
4. G. Boyde, Bounding size of homotopy groups of spheres, Proc. Edinburgh Math. Soc., 63 (2020), 1100–1105. https://doi.org/10.1017/S001309152000036X
5. M. Golasiński, D. L. Gonçalves, P. Wong, Exponents of $[\Omega (\Bbb S^{r+1}), \Omega(Y)]$, in Algebraic Topology and Related Topics, (2019), 103–122. https://doi.org/10.1007/978-981-13-5742-8_7
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On the digital Hopf images and monoid isomorphisms;Publicationes Mathematicae Debrecen;2023-07-01