Well-posedness and critical index set of the Cauchy problem for the coupled KdV-KdV systems on $ \mathbb{T} $

Author:

Yang Xin1,Zhang Bing-Yu2

Affiliation:

1. Department of Mathematics, University of California, Riverside, Riverside, CA 92521, USA

2. Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA

Abstract

<p style='text-indent:20px;'>Studied in this paper is the well-posedness of the Cauchy problem for the coupled KdV-KdV systems</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1100000"> \begin{document}$ \begin{equation} \left\{\begin{array}{rcl} u_t+a_{1}u_{xxx} &amp; = &amp; c_{11}uu_x+c_{12}vv_x+d_{11}u_{x}v+d_{12}uv_{x}, \\ v_t+a_{2}v_{xxx}&amp; = &amp; c_{21}uu_x+c_{22}vv_x +d_{21}u_{x}v+d_{22}uv_{x}, \\ \left. (u, v)\right |_{t = 0} &amp; = &amp; (u_{0}, v_{0}) \end{array}\right. \ \ \ \ \ \ \ \ \left( {0.1} \right) \end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>posed on the periodic domain <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{T} $\end{document}</tex-math></inline-formula> in the following four spaces</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{split} { \mathcal H}^s_1: = H^s_0 (\mathbb{T})\times H^s_0 (\mathbb{T}), \quad { \mathcal H}^s_2: = H^s_0 ( \mathbb {T})\times H^s(\mathbb{T}), \\ { \mathcal H}^s_3: = H^s (\mathbb{T})\times H^s_0 (\mathbb{T}), \quad { \mathcal H}^s_4: = H^s (\mathbb{T})\times H^s (\mathbb{T}). \end{split} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>The coefficients are assumed to satisfy <inline-formula><tex-math id="M3">\begin{document}$ a_1 a_2\neq 0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ \sum\limits_{i, j}(c_{ij}^2+d_{ij}^2)&gt;0 $\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>Fix <inline-formula><tex-math id="M5">\begin{document}$ k\in\{1, 2, 3, 4\} $\end{document}</tex-math></inline-formula>. Then for any coefficients <inline-formula><tex-math id="M6">\begin{document}$ a_1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ a_2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ (c_{ij}) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ (d_{ij}) $\end{document}</tex-math></inline-formula>, it is shown that there exists a critical index <inline-formula><tex-math id="M10">\begin{document}$ s^*_k \in (-\infty, +\infty] $\end{document}</tex-math></inline-formula> such that system (0.1) is analytically locally well-posed in <inline-formula><tex-math id="M11">\begin{document}$ \mathcal{H}^s_k $\end{document}</tex-math></inline-formula> if <inline-formula><tex-math id="M12">\begin{document}$ s&gt;s^*_k $\end{document}</tex-math></inline-formula> but weakly analytically ill-posed if <inline-formula><tex-math id="M13">\begin{document}$ s&lt;s^{*}_k $\end{document}</tex-math></inline-formula>. Viewing <inline-formula><tex-math id="M14">\begin{document}$ s^*_k $\end{document}</tex-math></inline-formula> as a function of the coefficients, its range <inline-formula><tex-math id="M15">\begin{document}$ \mathcal {C}_k $\end{document}</tex-math></inline-formula> is defined to be the <i>critical index set</i> for the analytical well-posedness of (0.1) in <inline-formula><tex-math id="M16">\begin{document}$ \mathcal {H}^s_k $\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>By investigating some properties of the <i>irrationality exponents</i> of the real numbers and by establishing some sharp bilinear estimates in non-divergence form, we manage to identify</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ { \mathcal C}_1 = \left \{ -\frac12, \infty \right\} \bigcup \left \{ \alpha: \frac12\leq \alpha\leq 1 \right \} , \quad { \mathcal C}_q = \left \{ -\frac12, -\frac14, \infty \right\} \bigcup \left \{ \alpha: \frac12\leq \alpha\leq 1 \right \} . $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>for <inline-formula><tex-math id="M17">\begin{document}$ q = 2, 3, 4 $\end{document}</tex-math></inline-formula>. In particular, these sets contain an open interval <inline-formula><tex-math id="M18">\begin{document}$ (\frac12, 1) $\end{document}</tex-math></inline-formula>. This is in sharp contrast to the <inline-formula><tex-math id="M19">\begin{document}$ \mathbb {R} $\end{document}</tex-math></inline-formula> case in which the critical index set <inline-formula><tex-math id="M20">\begin{document}$ { \mathcal C} $\end{document}</tex-math></inline-formula> for the analytical well-posedness of (0.1) in the space <inline-formula><tex-math id="M21">\begin{document}$ H^s ( \mathbb {R})\times H^s ( \mathbb {R}) $\end{document}</tex-math></inline-formula> consists of exactly four numbers: <inline-formula><tex-math id="M22">\begin{document}$ { \mathcal C} = \left \{ -\frac{13}{12}, -\frac34, 0, \frac34 \right \}. $\end{document}</tex-math></inline-formula></p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Long time bounds for coupled KdV equations;Physica D: Nonlinear Phenomena;2024-11

2. THE SMOOTH SOLUTIONS OF A CLASS OF COUPLED KDV EQUATIONS;Journal of Applied Analysis & Computation;2024

3. Smoothing and global attractors for the Hirota-Satsuma system on the torus;Journal of Mathematical Analysis and Applications;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3