Abstract
<p style='text-indent:20px;'>A zero-dimensional (resp. symbolic) flow is a suspension flow over a zero-dimensional system (resp. a subshift). We show that any topological flow admits a principal extension by a zero-dimensional flow. Following [<xref ref-type="bibr" rid="b6">6</xref>] we deduce that any topological flow admits an extension by a symbolic flow if and only if its time-<inline-formula><tex-math id="M1">\begin{document}$ t $\end{document}</tex-math></inline-formula> map admits an extension by a subshift for any <inline-formula><tex-math id="M2">\begin{document}$ t\neq 0 $\end{document}</tex-math></inline-formula>. Moreover the existence of such an extension is preserved under orbit equivalence for regular topological flows, but this property does not hold for singular flows. Finally we investigate symbolic extensions for singular suspension flows. In particular, the suspension flow over the full shift on <inline-formula><tex-math id="M3">\begin{document}$ \{0,1\}^{\mathbb Z} $\end{document}</tex-math></inline-formula> with a roof function <inline-formula><tex-math id="M4">\begin{document}$ f $\end{document}</tex-math></inline-formula> vanishing at the zero sequence <inline-formula><tex-math id="M5">\begin{document}$ 0^\infty $\end{document}</tex-math></inline-formula> admits a principal symbolic extension or not depending on the smoothness of <inline-formula><tex-math id="M6">\begin{document}$ f $\end{document}</tex-math></inline-formula> at <inline-formula><tex-math id="M7">\begin{document}$ 0^\infty $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference14 articles.
1. L. M. Abramov.On the entropy of a flow, Dokl. Akad. Nauk SSSR, 128 (1959), 873-875.
2. M. Beboutoff, W. Stepanoff.Sur la mesure invariante dans les systemes dynamiques qui ne different que par le temps, Rec. Math. [Mat. Sbornik] N.S., 7 (1940), 143-166.
3. R. Bowen, P. Walters.Expansive one-parameter flows, J. Differential Equations, 12 (1972), 180-193.
4. M. Boyle, T. Downarowicz.The entropy theory of symbolic extensions, Invent. Math., 156 (2004), 119-161.
5. M. Boyle, D. Fiebig, U. Fiebig.Residual entropy, conditional entropy and subshift covers, Forum Math., 14 (2002), 713-757.