Zero-dimensional and symbolic extensions of topological flows

Author:

Burguet David,Shi Ruxi

Abstract

<p style='text-indent:20px;'>A zero-dimensional (resp. symbolic) flow is a suspension flow over a zero-dimensional system (resp. a subshift). We show that any topological flow admits a principal extension by a zero-dimensional flow. Following [<xref ref-type="bibr" rid="b6">6</xref>] we deduce that any topological flow admits an extension by a symbolic flow if and only if its time-<inline-formula><tex-math id="M1">\begin{document}$ t $\end{document}</tex-math></inline-formula> map admits an extension by a subshift for any <inline-formula><tex-math id="M2">\begin{document}$ t\neq 0 $\end{document}</tex-math></inline-formula>. Moreover the existence of such an extension is preserved under orbit equivalence for regular topological flows, but this property does not hold for singular flows. Finally we investigate symbolic extensions for singular suspension flows. In particular, the suspension flow over the full shift on <inline-formula><tex-math id="M3">\begin{document}$ \{0,1\}^{\mathbb Z} $\end{document}</tex-math></inline-formula> with a roof function <inline-formula><tex-math id="M4">\begin{document}$ f $\end{document}</tex-math></inline-formula> vanishing at the zero sequence <inline-formula><tex-math id="M5">\begin{document}$ 0^\infty $\end{document}</tex-math></inline-formula> admits a principal symbolic extension or not depending on the smoothness of <inline-formula><tex-math id="M6">\begin{document}$ f $\end{document}</tex-math></inline-formula> at <inline-formula><tex-math id="M7">\begin{document}$ 0^\infty $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference14 articles.

1. L. M. Abramov.On the entropy of a flow, Dokl. Akad. Nauk SSSR, 128 (1959), 873-875.

2. M. Beboutoff, W. Stepanoff.Sur la mesure invariante dans les systemes dynamiques qui ne different que par le temps, Rec. Math. [Mat. Sbornik] N.S., 7 (1940), 143-166.

3. R. Bowen, P. Walters.Expansive one-parameter flows, J. Differential Equations, 12 (1972), 180-193.

4. M. Boyle, T. Downarowicz.The entropy theory of symbolic extensions, Invent. Math., 156 (2004), 119-161.

5. M. Boyle, D. Fiebig, U. Fiebig.Residual entropy, conditional entropy and subshift covers, Forum Math., 14 (2002), 713-757.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3