Author:
Figueiredo Giovany,Montenegro Marcelo,Stapenhorst Matheus F.
Abstract
<p style='text-indent:20px;'>In this paper we show the existence of a nonnegative solution for a singular problem with logarithmic and exponential nonlinearity, namely <inline-formula><tex-math id="M1">\begin{document}$ -\Delta u = \log(u)\chi_{\{u>0\}} + \lambda f(u) $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M2">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M3">\begin{document}$ u = 0 $\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id="M4">\begin{document}$ \partial\Omega $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M5">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a smooth bounded domain in <inline-formula><tex-math id="M6">\begin{document}$ \mathbb{R}^{2} $\end{document}</tex-math></inline-formula>. We replace the singular function <inline-formula><tex-math id="M7">\begin{document}$ \log(u) $\end{document}</tex-math></inline-formula> by a function <inline-formula><tex-math id="M8">\begin{document}$ g_\epsilon(u) $\end{document}</tex-math></inline-formula> which pointwisely converges to -<inline-formula><tex-math id="M9">\begin{document}$ \log(u) $\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id="M10">\begin{document}$ \epsilon \rightarrow 0 $\end{document}</tex-math></inline-formula>. When the parameter <inline-formula><tex-math id="M11">\begin{document}$ \lambda>0 $\end{document}</tex-math></inline-formula> is small enough, the corresponding energy functional to the perturbed equation <inline-formula><tex-math id="M12">\begin{document}$ -\Delta u + g_\epsilon(u) = \lambda f(u) $\end{document}</tex-math></inline-formula> has a critical point <inline-formula><tex-math id="M13">\begin{document}$ u_\epsilon $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M14">\begin{document}$ H_0^1(\Omega) $\end{document}</tex-math></inline-formula>, which converges to a nontrivial nonnegative solution of the original problem as <inline-formula><tex-math id="M15">\begin{document}$ \epsilon \rightarrow 0 $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献