Convergence of deep fictitious play for stochastic differential games

Author:

Han Jiequn12,Hu Ruimeng3,Long Jihao4

Affiliation:

1. Center for Computational Mathematics, Flatiron Institute, 162 5th Avenue, New York, NY, USA

2. Department of Mathematics, Princeton University, Princeton, NJ, USA

3. Department of Mathematics, and Department of Statistics and Applied Probability, University of California, Santa Barbara, CA, USA

4. The Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, USA

Abstract

<p style='text-indent:20px;'>Stochastic differential games have been used extensively to model agents' competitions in finance, for instance, in P2P lending platforms from the Fintech industry, the banking system for systemic risk, and insurance markets. The recently proposed machine learning algorithm, deep fictitious play, provides a novel and efficient tool for finding Markovian Nash equilibrium of large <inline-formula><tex-math id="M1">\begin{document}$ N $\end{document}</tex-math></inline-formula>-player asymmetric stochastic differential games [J. Han and R. Hu, Mathematical and Scientific Machine Learning Conference, pages 221-245, PMLR, 2020]. By incorporating the idea of fictitious play, the algorithm decouples the game into <inline-formula><tex-math id="M2">\begin{document}$ N $\end{document}</tex-math></inline-formula> sub-optimization problems, and identifies each player's optimal strategy with the deep backward stochastic differential equation (BSDE) method parallelly and repeatedly. In this paper, we prove the convergence of deep fictitious play (DFP) to the true Nash equilibrium. We can also show that the strategy based on DFP forms an <inline-formula><tex-math id="M3">\begin{document}$ \epsilon $\end{document}</tex-math></inline-formula>-Nash equilibrium. We generalize the algorithm by proposing a new approach to decouple the games, and present numerical results of large population games showing the empirical convergence of the algorithm beyond the technical assumptions in the theorems.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference71 articles.

1. A. Angiuli, J. -P. Fouque and M. Laurière, Unified reinforcement Q-learning for mean field game and control problems, arXiv: 2006.13912, 2020.

2. M. Arjovsky, S. Chintala and L. Bottou, Wasserstein generative adversarial networks, In Proceedings of the 34th International Conference on Machine Learning, volume 70 of PLMR, 2017, 214–223.

3. R. Arora, A. Basu, P. Mianjy and A. Mukherjee, Understanding deep neural networks with rectified linear units, arXiv preprint, arXiv: 1611.01491, 2016.

4. E. Bayraktar, A. Budhiraja, A. Cohen.A numerical scheme for a mean field game in some queueing systems based on Markov chain approximation method, SIAM J. Control Optim., 56 (2018), 4017-4044.

5. C. Beck, S. Becker, P. Cheridito, A. Jentzen and A. Neufeld, Deep splitting method for parabolic PDEs, SIAM J. Sci. Comput., 43 (2021), A3135–A3154.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3