Ground truth free denoising by optimal transport

Author:

Dittmer Sören1,Schönlieb Carola-Bibiane1,Maass Peter2

Affiliation:

1. Cambridge Image Analysis, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

2. Zentrum für Technomathematik. FB 3 Mathematik und Informatik, Universität Bremen Postfach 330 440, 28344 Bremen, Germany

Abstract

<p style='text-indent:20px;'>This paper proposes a new training strategy for a denoiser removing (additive) independent noise, with only as readily available data as possible and no further assumptions on the data nor noise. While every real-world measurement contains some noise, it seems that this problem remains unsolved for settings where clean data samples are lacking. We propose a pushforward operator formulation of an ideal denoiser and a corresponding GAN setup for training a denoiser ground truth free. The GAN trains solely on samples of noisy data and noise. In a series of denoising experiments in 1D and 2D, we demonstrate our training strategy's performance, which significantly improves the state-of-the-art of unsupervised denoising. Moreover, for some non-Gaussian noise, the method compares favorably even to naive supervised denoising.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Control and Optimization,Algebra and Number Theory,Applied Mathematics,Control and Optimization,Algebra and Number Theory

Reference47 articles.

1. J. Adler, O. Öktem.Learned primal-dual reconstruction, IEEE Transactions on Medical Imaging, 37 (2018), 1322-1332.

2. J. Adler, O. Öktem.Solving ill-posed inverse problems using iterative deep neural networks, Inverse Problems, IOP Publishing, 33 (2017), 124007.

3. B. Amos, L. Xu, J. Kolter, Input convex neural networks, Proceedings of the 34th International Conference on Machine Learning-Volume 70, (2017), 146–155.

4. S. Arridge, P. Maass, O. Öktem, C. Schönlieb.Solving inverse problems using data-driven models, Acta Numerica, 28 (2019), 1-174.

5. M. Arjovsky, S. Chintala and L. Bottou, Wasserstein generative adversarial networks, International Conference on Machine Learning, PMLR, (2017), 214–223.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3