Author:
Zhang Huiqin,Wang JinChun,Wang Meng,Chen Xudong
Abstract
<p style='text-indent:20px;'>The quality of High-tech products usually influenced by numerous cross-correlation quality characteristics in production process. However, traditional quality control method is difficult to satisfy the requirement of monitoring and diagnosing multiple related quality characteristics. Scholars found that the diagnosis effect of support vector machine method is better than others. But, constructing fuzzy support vector machine for diagnosis by calculating the sample membership degree from the sample point to the class center is vulnerable to the influence of sample noise points because it will lead to low accuracy rate. Therefore, this paper focus on exploring the issue about the abnormal pattern and intelligent diagnosis of interrelated multivariable process quality, by taking the multivariable quality characteristics of capacitor as research object. Using multivariate exponentially weighted moving average (MEWMA) control chart to joint monitor the multiple quality characteristics. Constructing a fuzzy support vector machine (FSVM) based on cloud calculative model and cuckoo search (CS) for intelligent diagnosis on abnormal pattern. The result showed that the diagnostic accuracy rate for sample data is 97.42%. In instance analysis, the average diagnosis accuracy rate is 95.60%. It verifies the CS-FSVM model has a good diagnosis performance.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management,Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献