Abstract
<p style='text-indent:20px;'>In this paper, we propose a distributionally robust chance-constrained SVM model with <inline-formula><tex-math id="M1">\begin{document}$ \ell_2 $\end{document}</tex-math></inline-formula>-Wasserstein ambiguity. We present equivalent formulations of distributionally robust chance constraints based on <inline-formula><tex-math id="M2">\begin{document}$ \ell_2 $\end{document}</tex-math></inline-formula>-Wasserstein ambiguity. In terms of this method, the distributionally robust chance-constrained SVM model can be transformed into a solvable linear 0-1 mixed integer programming problem when the <inline-formula><tex-math id="M3">\begin{document}$ \ell_2 $\end{document}</tex-math></inline-formula>-Wasserstein distance is discrete form. The DRCC-SVM model could be transformed into a tractable 0-1 mixed-integer SOCP programming problem for the continuous case. Finally, numerical experiments are given to illustrate the effectiveness and feasibility of our model.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management,Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management
Reference26 articles.
1. G. Aurora, M. C. Victoria.Towards energy efficiency smart buildings models based on in telligent data analytics, Procedia Computer Science, 83 (2016), 994-999.
2. Y. Q. Bai, K. J. Shen.Alternating direction method of multipliers for $\ell_1$-$\ell_2$ regularized logistic regression model, J. Oper. Res. Soc. China, 4 (2016), 243-253.
3. Y. Q. Bai, Y. J. Shen, K. J. Shen.Consensus proximal support vector machine for classficication problems with sparse solutions, J. Oper. Res. Soc. China, 2 (2014), 57-79.
4. C. Bhattacharyya, Robust classification of noisy data using second order cone programming approach, In Intelligent Sensing and Information Processing, IEEE, (2004), 433–438.
5. J. Blanchet, L. Chen and X. Y. Zhou, Distributionally robust mean-variance portfolio selection with wasserstein distances, preprint, arXiv: 1802.04885.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献