Author:
Chen Yu,Li Yonggang,Sun Bei,Yang Chunhua,Zhu Hongqiu
Abstract
<p style='text-indent:20px;'>Considering the uncertainty of zinc concentrates and the shortage of high-quality ore inventory, a multi-objective chance-constrained programming (MOCCP) is established for blending optimization. Firstly, the distribution characteristics of zinc concentrates are obtained by statistical methods and the normal distribution is truncated according to the actual industrial situation. Secondly, by minimizing the pessimistic value and maximizing the optimistic value of object function, a MOCCP is decomposed into a MiniMin and MaxiMax chance-constrained programming, which is easy to handle. Thirdly, a hybrid intelligent algorithm is presented to obtain the Pareto front. Then, the furnace condition of roasting process is established based on analytic hierarchy process, and a satisfactory solution is selected from Pareto solution according to expert rules. Finally, taking the production data as an example, the effectiveness and feasibility of this method are verified. Compared to traditional blending optimization, recommended model both can ensure that each component meets the needs of production probability, and adjust the confident level of each component. Compared with the distribution without truncation, the optimization results of this method are more in line with the actual situation.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management,Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献