Author:
Senior David Bechara,Hryniewicz Umberto L.,Salomão Pedro A. S.
Abstract
<p style='text-indent:20px;'>We introduce numerical invariants of contact forms in dimension three and use asymptotic cycles to estimate them. As a consequence, we prove a version for Anosov Reeb flows of results due to Hutchings and Weiler on mean actions of periodic points. The main tool is the Action-Linking Lemma, expressing the contact area of a surface bounded by periodic orbits as the Liouville average of the asymptotic intersection number of most trajectories with the surface.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Algebra and Number Theory,Analysis,Applied Mathematics,Algebra and Number Theory,Analysis
Reference17 articles.
1. A. Abbondandolo and G. Benedetti, On the local systolic optimality of Zoll contact forms, preprint, arXiv: 1912.04187.
2. A. Abbondandolo, B. Bramham, U. L. Hryniewicz, P. A. S. Salomão.Sharp systolic inequalities for Reeb flows on the three-sphere, Invent. Math., 211 (2018), 687-778.
3. A. Abbondandolo, B. Bramham, U. L. Hryniewicz, P. A. S. Salomão.Systolic ratio, index of closed orbits and convexity for tight contact forms on the three-sphere, Compos. Math., 154 (2018), 2643-2680.
4. D. Bechara Senior, Asymptotic action and asymptotic winding number for area-preserving diffeomorphisms of the disk, preprint, arXiv: 2003.05225.
5. G. Benedetti, J. Kang.A local contact systolic inequality in dimension three, J. Eur. Math. Soc. (JEMS), 23 (2021), 721-764.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献