Matrix measures, stability and contraction theory for dynamical systems on time scales

Author:

Russo Giovanni,Wirth Fabian

Abstract

<p style='text-indent:20px;'>This paper is concerned with the study of the stability of dynamical systems evolving on time scales. We first formalize the notion of matrix measures on time scales, prove some of their key properties and make use of this notion to study both linear and nonlinear dynamical systems on time scales. Specifically, we start with considering linear time-varying systems and, for these, we prove a time scale analogous of an upper bound due to Coppel. We make use of this upper bound to give stability and input-to-state stability conditions for linear time-varying systems. Then, we consider nonlinear time-varying dynamical systems on time scales and establish a sufficient condition for the convergence of the solutions. Finally, after linking our results to the existence of a Lyapunov function, we make use of our approach to study certain epidemic dynamics and complex networks. For the former, we give a sufficient condition on the parameters of a SIQR model on time scales ensuring that its solutions converge to the disease-free solution. For the latter, we first give a sufficient condition for pinning synchronization of complex time scale networks and then use this condition to study certain collective opinion dynamics. The theoretical results are complemented with simulations.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3