Phase transitions of the SIR Rumor spreading model with a variable trust rate

Author:

Choi Sun-Ho,Seo Hyowon,Yoo Minha

Abstract

<p style='text-indent:20px;'>We study a threshold phenomenon of rumor outbreak on the SIR rumor spreading model with a variable trust rate depending on the populations of ignorants and spreaders. Rumor outbreak in the SIR rumor spreading model is defined as a persistence of the final rumor size in the large population limit or thermodynamics limit <inline-formula><tex-math id="M1">\begin{document}$ (n\to \infty) $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M2">\begin{document}$ 1/n $\end{document}</tex-math></inline-formula> is the initial population of spreaders. We present a rigorous proof for the existence of threshold on the final size of the rumor with respect to the basic reproduction number <inline-formula><tex-math id="M3">\begin{document}$ \mathcal{R}_0 $\end{document}</tex-math></inline-formula>. Moreover, we prove that a phase transition phenomenon occurs for the final size of the rumor (as an order parameter) with respect to the basic reproduction number and provide a criterion to determine whether the phase transition is of first or second order. Precisely, we prove that there is a critical number <inline-formula><tex-math id="M4">\begin{document}$ \mathcal{R}_1 $\end{document}</tex-math></inline-formula> such that if <inline-formula><tex-math id="M5">\begin{document}$ \mathcal{R}_1&gt;1 $\end{document}</tex-math></inline-formula>, then the phase transition is of the first order, i.e., the limit of the final size is not a continuous function with respect to <inline-formula><tex-math id="M6">\begin{document}$ \mathcal{R}_0 $\end{document}</tex-math></inline-formula>. The discontinuity is a jump-type discontinuity and it occurs only at <inline-formula><tex-math id="M7">\begin{document}$ \mathcal{R}_0 = 1 $\end{document}</tex-math></inline-formula>. If <inline-formula><tex-math id="M8">\begin{document}$ \mathcal{R}_1&lt;1 $\end{document}</tex-math></inline-formula>, then the phase transition is second order, i.e., the limit of the final size is continuous with respect to <inline-formula><tex-math id="M9">\begin{document}$ \mathcal{R}_0 $\end{document}</tex-math></inline-formula> and its derivative exists, except at <inline-formula><tex-math id="M10">\begin{document}$ \mathcal{R}_0 = 1 $\end{document}</tex-math></inline-formula>, and the derivative is not continuous at <inline-formula><tex-math id="M11">\begin{document}$ \mathcal{R}_0 = 1 $\end{document}</tex-math></inline-formula>. We also present numerical simulations to demonstrate our analytical results for the threshold phenomena and phase transition order criterion.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3