Boundary stabilization for a star-shaped network of variable coefficients strings linked by a point mass

Author:

Boughamda Walid

Abstract

<p style='text-indent:20px;'>This study is concerned with the pointwise stabilization for a star-shaped network of <inline-formula><tex-math id="M1">\begin{document}$ N $\end{document}</tex-math></inline-formula> variable coefficients strings connected at the common node by a point mass and subject to boundary feedback dampings at all extreme nodes. It is shown that the closed-loop system has a sequence of generalized eigenfunctions which forms a Riesz basis for the state Hilbert space. As a consequence, the spectrum-determined growth condition fulfills. In the meanwhile, the asymptotic expression of the spectrum is presented, and the exponential stability of the system is obtained by giving the optimal decay rate. We prove also that a phenomenon of lack of uniform stability occurs in the absence of damper at one extreme node. This paper reconfirmed the main stability results given by Hansen and Zuazua [SIAM J. Control Optim., <b>33</b> (1995), 1357-1391] in a very particular case.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference46 articles.

1. N. Akhiezer and I. Glazman, Theory of Linear Operators in Hilbert Space, vol. 9, 10 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1981.

2. K. Ammari, A. Henrot, M. Tucsnak.Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string, Asymptotic Analysis, 28 (2001), 215-240.

3. K. Ammari, A. Henrot, M. Tucsnak.Optimal location of the actuator for the pointwise stabilization of a string, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, 330 (2000), 275-280.

4. K. Ammari, M. Jellouli, M. Khenissi.Stabilization of generic trees of strings, J. Dyn. Contin. Syst., 11 (2005), 177-193.

5. K. Ammari, M. Jellouli.Remark in stabilization of tree-shaped networks of strings, Appl. Maths., 52 (2007), 327-343.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3