A novel sensing concept utilizing targeted, complex, nonlinear MEMS dynamics

Author:

Hayashi Seigan1,Cameron Chris J.1,Gutschmidt Stefanie1

Affiliation:

1. Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand

Abstract

<p style='text-indent:20px;'>We present a case study of an active micro-electromechanical system (MEMS). The MEMS cantilever has integrated actuation and sensor mechanisms, which enable the active operation of the system. Our analysis is comprised of numerical continuation of equilibria and periodic orbits, which are briefly compared and discussed with initial experimental observations. In this case study, we consider the dynamic behaviour of two MEMS configurations, one excluding, and the other including a high-pass filter. With that we wish to study any differences between a dynamical system as typically analysed in the literature and the same system when investigated experimentally. We show that the MEMS' dynamic behaviour is significantly influenced by the experimental setup with different dominating dynamics associated with power electronics and filter properties. The dynamics of the MEMS cantilever is characterised by three key effects: the system is an actively operated system; it is a micro-scale system with amplitudes at nano-scale dimensions; and the integrated actuation physics introduces interesting complex dynamics. The MEMS cantilever with its integrated actuation and sensing abilities was developed for a commercial technology, thus, making our findings directly implementable and meaningful.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Medicine,Computational Mathematics,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3