Abstract
<p style='text-indent:20px;'>The <inline-formula><tex-math id="M1">\begin{document}$ p $\end{document}</tex-math></inline-formula>-persistent <inline-formula><tex-math id="M2">\begin{document}$ q $\end{document}</tex-math></inline-formula>-combinatorial Laplacian defined for a pair of simplicial complexes is a generalization of the <inline-formula><tex-math id="M3">\begin{document}$ q $\end{document}</tex-math></inline-formula>-combinatorial Laplacian. Given a filtration, the spectra of persistent combinatorial Laplacians not only recover the persistent Betti numbers of persistent homology but also provide extra multiscale geometrical information of the data. Paired with machine learning algorithms, the persistent Laplacian has many potential applications in data science. Seeking different ways to find the spectrum of an operator is an active research topic, becoming interesting when ideas are originated from multiple fields. In this work, we explore an alternative approach for the spectrum of persistent Laplacians. As the eigenvalues of a persistent Laplacian matrix are the roots of its characteristic polynomial, one may attempt to find the roots of the characteristic polynomial by homotopy continuation, and thus resolving the spectrum of the corresponding persistent Laplacian. We consider a set of simple polytopes and small molecules to prove the principle that algebraic topology, combinatorial graph, and algebraic geometry can be integrated to understand the shape of data.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference37 articles.
1. E. L. Allgower, D. J. Bates, A. J. Sommese, C. W. Wampler.Solution of polynomial systems derived from differential equations, Computing, 76 (2006), 1-10.
2. D. N. Arnold, G. David, M. Filoche, D. Jerison and S. Mayboroda, Computing spectra without solving eigenvalue problems, SIAM J. Sci. Comput., 41 (2019), B69–B92.
3. D. J. Bates, I. A. Fotiou and P. Rostalski, A numerical algebraic geometry approach to nonlinear constrained optimal control, 46th IEEE Conference on Decision and Control, New Orleans, LA, 2007.
4. D. J. Bates, J. D. Hauenstein, A. J. Sommese and C. W. Wampler, Bertini: Software for numerical algebraic geometry., Available from: https://bertini.nd.edu.
5. D. J. Bates, J. D. Hauenstein, A. J. Sommese and C. W. Wampler, Numerically Solving Polynomial Systems with Bertini, Software, Environments, and Tools, 25, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Persistent Topological Laplacian Analysis of SARS-CoV-2 Variants;Journal of Computational Biophysics and Chemistry;2023-06-08
2. Biomolecular Topology: Modelling and Analysis;Acta Mathematica Sinica, English Series;2022-10