A causal interactions indicator between two time series using extreme variations in the first eigenvalue of lagged correlation matrices

Author:

Dominguez Alejandro Rodriguez12,Yadav Om Hari3

Affiliation:

1. Department of Quantitative Research, Miralta Finance Bank S.A., Madrid, 28043, Spain

2. Department of Computer Science, University of Reading, Reading, United Kingdom

3. Department of Data Science, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Kerala, India

Abstract

<p>This paper presents a method to identify causal interactions between two time series. The largest eigenvalue follows a Tracy-Widom distribution, derived from a Coulomb gas model. This defines causal interactions as the pushing and pulling of the gas, measurable by the variability of the largest eigenvalue's explanatory power. The hypothesis that this setup applies to time series interactions was validated, with causality inferred from time lags. The standard deviation of the largest eigenvalue's explanatory power in lagged correlation matrices indicated the probability of causal interaction between time series. Contrasting with traditional methods that rely on forecasting or window-based parametric controls, this approach offers a novel definition of causality based on dynamic monitoring of tail events. Experimental validation with controlled trials and historical data shows that this method outperforms Granger's causality test in detecting structural changes in time series. Applications to stock returns and financial market data show the indicator's predictive capabilities regarding average stock return and realized volatility. Further validation with brokerage data confirms its effectiveness in inferring causal relationships in liquidity flows, highlighting its potential for market and liquidity risk management.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3