Callogenesis and somatic embryogenesis of <i>Oryza sativa</i> L. (cv. MARDI Siraj 297) under the influence of 2, 4-dichlorophenoxyacetic acid and kinetin

Author:

Sidek Noorhazira12,Nulit Rosimah1,Kong Yap Chee1,Yien Christina Yong Seok1,Sekeli Rogayah3,EL-Barghathi Mariam F.4

Affiliation:

1. Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia

2. Department of Agricultural Sciences, Faculty of Agro Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia

3. Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI) Headquarters, Persiaran MARDI-UPM, 43400, Serdang, Selangor, Malaysia

4. Department of Botany, Faculty of Sciences, University of Benghazi, Benghazi, Libya

Abstract

<abstract> <p>Callogenesis and embryogenesis are integral parts of many tissue culture procedures for genetic manipulation in rice. However, the efficiency of both processes is largely dependent on the media constituent especially the plant growth regulators (PGRs) due to the genotype-dependent nature of <italic>in vitro</italic> culture protocols. Therefore, this study investigates the effect of two PGRs; 2, 4-dichlorophenoxyacetic acid (2, 4-D) and kinetin (Kin) on callus growth and somatic embryogenesis of an important Malaysian rice cultivar (<italic>Oryza sativa</italic> L. cv. MARDI Siraj 297). Mature rice seeds explants were inoculated in Murashige &amp; Skoog (MS) medium supplemented with different combinations of 2, 4-D (0 to 3.5 mg/L) and Kin (0 to 0.5 mg/L) to induce callogenesis. Parameters for callus growth such as fresh weight (FW), callus induction frequency (CIF), embryogenic callus frequency (ECF), regeneration frequency (RF), number of plantlets per callus (PPC), callus texture and callus color were observed after 35 days of inoculation. The results show that the maximum callus growth was achieved in MS medium supplemented with combination of 2.0 mg/L 2, 4-D and 0.2 mg/L Kin, represented by the highest FW (211 mg), CIF (95%), ECF (90%), RF (100%) and PPC (22 plantlets); along with friable callus texture. Low concentration of 2, 4-D (0 to 0.5 mg/L) in the presence or absence of Kin promotes root growth instead of callus, while high concentrations (above 3.0 mg/L) retard the callus formation. The embryogenic calli from this optimized PGRs combination were successfully formed shoots in MS medium supplemented with 2 mg/L BAP and 1 mg/L NAA, followed by rooting in PGRs-free MS medium. This finding provides an efficient protocol for callogenesis and somatic embryogenesis of MARDI Siraj 297, since this is the first published report regarding somatic embryogenesis induction of this cultivar.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Agricultural and Biological Sciences (miscellaneous),Food Science

Reference84 articles.

1. A Aiman (2020) Enough rice to last up to 6 months, says Khazanah researcher. FMT News. Available from: https://www.freemalaysiatoday.com/category/nation/2020/04/03/enough-rice-to-last-up-to-6-months-says-khazanah-researcher/

2. Bernama (2021) Malaysia to raise rice buffer stock to 290,000 metric tonnes by 2023. Malay Mail. Available from: https://www.malaymail.com/news/malaysia/2021/09/04/malaysia-to-raise-rice-buffer-stock-to-290000-metric-tonnes-by-2023/2002982

3. Department of Statistics Malaysia (2021) Selected agricultural indicators, Malaysia, 2021. Available from: https://www.dosm.gov.my/v1/index.php?r=column/pdfPrev&id=TDV1YU4yc1Z0dUVyZ0xPV0ptRlhWQT09

4. Che Omar S, Shaharudin A, Tumin SA (2019) The status of the paddy and rice industry in Malaysia. Khazanah Research Institute. Available from: http://www.krinstitute.org/assets/contentMS/img/template/editor/20190409_RiceReport_Full Report_Final.pdf

5. Ministry of Agriculture and Food Industries (2021) MAFI mengalu-alukan pembangunan benih padi baharu IS21 oleh Agensi Nuklear Malaysia, MOSTI. Available from: https://www.mafi.gov.my/documents/20182/269754/SIARAN+MEDIA+MAFI+VARIETI+BENIH+PADI+%2820+NOVEMBER+2021%29-min.pdf/48681d83-e1c5-425f-9901-6dae0a537b7d

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3