Using air thermal time to predict the time course of seedling emergence of <i>Avena sterilis</i> subsp. <i>sterilis</i> (sterile oat) under Mediterranean climate

Author:

Bastida Fernando1,Laleh Kambiz Mootab2,Gonzalez-Andujar Jose L.3

Affiliation:

1. Departamento de Ciencias Agroforestales, Campus El Carmen, Universidad de Huelva, Huelva, Spain

2. Department of Agronomy and Plant breeding Sciences, College of Aburaihan, University of Tehran, Tehran, Iran

3. Instituto de Agricultura Sostenible (CSIC), Córdoba, Spain

Abstract

<abstract> <p><italic>Avena sterilis</italic> subsp. <italic>sterilis</italic> (sterile oat) is a troublesome grass weed of winter cereals both in its native range encompassing the Mediterranean up to South Asia, and in regions of America, Northern Europe and Australia where it is introduced. A better understanding of seedling emergence patterns of this weed in cereal fields can help control at early growth stages benefiting efficacy under a changing climate. With this aim, the objective of this research was to develop and validate a field emergence model for this weed based on cumulative air thermal time (CTT, ℃ day). Experiments for model setting and evaluation were carried out in experimental and commercial fields in southern Spain. Two alternative models, Gompertz and Weibull, were compared for their ability to represent emergence time course. The Weibull model provided the best fit to the data. Evaluation through independent experiments showed good model performance in predicting seedling emergence. According to the developed model, the onset of emergence takes place at 130 CTT, and 50% and 90% emergence is achieved at 448 and 632 CTT, respectively. Results indicate that this model could be useful for growers as a tool for decision-making in <italic>A. sterilis</italic> control.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Agricultural and Biological Sciences (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3