Effects of nitrogen reduction rates on grain yield and nitrogen utilization in a wheat-maize rotation system in yellow cinnamon soil

Author:

Du Jun1,Wei Yi-chang2,Shoukat Muhammad Rizwan3,Wu Linyi2,He Ai-ling1,Liu Gao-yuan1,Guo Zhong-yi4,Laghari Yaseen5

Affiliation:

1. Institute of Plant Nutrition and Resource Environment, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China

2. College of Surveying and Geo-informatics, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China

3. College of Water Resources and Civil Engineering, China Agriculture University, Beijing 100083, China

4. China Zhumadian Academy of Agricultural Sciences, Zhumadian, Henan 463000, China

5. College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210097, China

Abstract

<abstract> <p>Excessive nitrogen (N) fertilizer application severely degrades soil and contaminates the atmosphere and water. A 2-year field experiment was conducted to investigate the effects of different N fertilizer strategies on wheat-summer corn rotation systems in yellow-brown soil areas. The experiment consisted of seven treatments: no N fertilization (CK), conventional fertilization (FP), optimized fertilization (CF), reduced N rates of 10% (90% FP), 20% (80% FP), 30% (70% FP), and a combination of controlled release with conventional urea at 7:3 ratio (CRU). The results indicate that under the condition of 80% FP, both CF and CRU treatments can increase the yield of wheat and corn for two consecutive years. Compared with FP treatment, the wheat yield of CF and CRU treatments increased by 3.62–2.57% and maize yield by 3.53–1.85% with N fertilizer recovery rate (NRE) of crops by 46.2–37.8%. The agronomic N use efficiency (aNUE) under CF treatment increased by 35.4–37.7%, followed by CRU, which increased by 30.5–33.9%. Moreover, compared with FP treatment, both CF and CRU treatment increased the content of organic matter (OM), total N (TN), and hydrolyzed N (HN) in the topsoil layer, and 70% FP treatment significantly reduced the HN content. Both CF and CRU treatments significantly increased the NO<sub>3</sub> concentrations in the 0–20 cm soil depth during the wheat and maize season at maturity stages and decreased the residual inorganic N below the plow layer (40–60 cm). During the corn season, the CF and CRU treatments significantly reduced the NO<sub>3</sub> concentration in the 40–60 cm soil layer from seedling to jointing. Considering various factors, CRU treatment under 80% FP conditions would be the best fertilization measure for wheat-corn rotation in yellow-brown soil areas.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference55 articles.

1. Pan JR, Ju XT, Liu XJ, et al. (2009) Fate of fertilizer nitrogen for winter wheat summer maize rotation in north China plain under optimization of irrigation and fertilization. J Nucl Agric Sci 23: 334–340.

2. De M, Liu ZP, Wang L, et al. (2020) Effects of different nitrogen levels on photosynthetic performance, nitrogen accumulation and translocation of barley. Acta Agric Boreali-Sin 35: 126–135.

3. Leghari SJ, Hu K, Wei Y, et al. (2024) Modelling the effects of cropping systems and irrigation methods on water consumption, N fates and crop yields in the North China Plain. Comput Electron Agric 218: 108677. https://doi.org/10.1016/j.compag.2024.108677

4. Bakhoum GS, Tawfik MM, Kabesh MO, et al. (2023) Potential role of algae extract as a natural stimulating for wheat production under reduced nitrogen fertilizer rates and water deficit. Biocatal Agri Biotech 51: 102794. https://doi.org/10.1016/j.bcab.2023.102794

5. Zhu ZL, Jin JY (2013) Fertilizer use and food security in China. J Plant Nutr Fertil 19: 259–273.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3