Author:
Li Caojie,Zhang Haixiang,Yang Xuehua
Abstract
<abstract><p>In this work, we consider an $ \alpha $-robust high-order numerical method for the time fractional nonlinear Korteweg-de Vries (KdV) equation. The time fractional derivatives are discretized by the L1 formula based on the graded meshes. For the spatial derivative, the nonlinear operator is defined to approximate the $ uu_x $, and two coupling equations are obtained by processing the $ u_{xxx} $ with the order reduction method. Finally, the nonlinear difference schemes with order ($ 2-\alpha $) in time and order $ 2 $ precision in space are obtained. This means that we can get a higher precision solution and improve the computational efficiency. The existence and uniqueness of numerical solutions for the proposed nonlinear difference scheme are proved theoretically. It is worth noting the unconditional stability and $ \alpha $-robust stability are also derived. Moreover, the optimal convergence result in the $ L_2 $ norms is attained. Finally, two numerical examples are given, which is consistent with the theoretical analysis.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference47 articles.
1. J. S. Russell, Report of the committee on waves, Report of the 7th Meeting of the British Association for the Advancement of Science, Liverpool, 417496, 1838.
2. D. J. Korteweg, G. De. Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422–443. https://doi.org/10.1080/14786449508620739
3. G. B. Whitham, Pure and Applied Mathematics, Linear and nonlinear waves, 1999. https://doi.org/10.1002/9781118032954
4. N. J. Zabusky, M. D. Kruskal, Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240. https://doi.org/10.1103/PhysRevLett.15.240
5. X. H. Yang, Z. M. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献