Abstract
<p style='text-indent:20px;'>In this paper, we consider a doubly nonlinear parabolic equation <inline-formula><tex-math id="M2">\begin{document}$ \partial _t \beta (u) - \nabla \cdot \alpha (x , \nabla u) \ni f $\end{document}</tex-math></inline-formula> with the homogeneous Dirichlet boundary condition in a bounded domain, where <inline-formula><tex-math id="M3">\begin{document}$ \beta : \mathbb{R} \to 2 ^{ \mathbb{R} } $\end{document}</tex-math></inline-formula> is a maximal monotone graph satisfying <inline-formula><tex-math id="M4">\begin{document}$ 0 \in \beta (0) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \nabla \cdot \alpha (x , \nabla u ) $\end{document}</tex-math></inline-formula> stands for a generalized <inline-formula><tex-math id="M6">\begin{document}$ p $\end{document}</tex-math></inline-formula>-Laplacian. Existence of solution to the initial boundary value problem of this equation has been studied in an enormous number of papers for the case where single-valuedness, coerciveness, or some growth condition is imposed on <inline-formula><tex-math id="M7">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>. However, there are a few results for the case where such assumptions are removed and it is difficult to construct an abstract theory which covers the case for <inline-formula><tex-math id="M8">\begin{document}$ 1 < p < 2 $\end{document}</tex-math></inline-formula>. Main purpose of this paper is to show the solvability of the initial boundary value problem for any <inline-formula><tex-math id="M9">\begin{document}$ p \in (1, \infty ) $\end{document}</tex-math></inline-formula> without any conditions for <inline-formula><tex-math id="M10">\begin{document}$ \beta $\end{document}</tex-math></inline-formula> except <inline-formula><tex-math id="M11">\begin{document}$ 0 \in \beta (0) $\end{document}</tex-math></inline-formula>. We also discuss the uniqueness of solution by using properties of entropy solution.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,Modelling and Simulation
Reference61 articles.
1. S. Aizicovici, V. M. Hokkanen.Doubly nonlinear equations with unbounded operators, Nonlinear Anal., 58 (2004), 591-607.
2. G. Akagi, U. Stefanelli.Doubly nonlinear equations as convex minimization, SIAM J. Math. Anal., 46 (2014), 1922-1945.
3. H. W. Alt, S. Luckhaus.Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341.
4. L. Ambrosio, N. Fusco, D. Pallara., Functions of Bounded Variation and Free Discontinuity Problems, ${ref.volume} (2000).
5. K. Ammar, Renormalized entropy solutions for degenerate nonlinear evolution problems, Electron. J. Differential Equations, 147 (2009), 32 pp.