Singular limit for reactive transport through a thin heterogeneous layer including a nonlinear diffusion coefficient

Author:

Gahn Markus

Abstract

<p style='text-indent:20px;'>Reactive transport processes in porous media including thin heterogeneous layers play an important role in many applications. In this paper, we investigate a reaction-diffusion problem with nonlinear diffusion in a domain consisting of two bulk domains which are separated by a thin layer with a periodic heterogeneous structure. The thickness of the layer, as well as the periodicity within the layer are of order <inline-formula><tex-math id="M1">\begin{document}$ \epsilon $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M2">\begin{document}$ \epsilon $\end{document}</tex-math></inline-formula> is much smaller than the size of the bulk domains. For the singular limit <inline-formula><tex-math id="M3">\begin{document}$ \epsilon \to 0 $\end{document}</tex-math></inline-formula>, when the thin layer reduces to an interface, we rigorously derive a macroscopic model with effective interface conditions between the two bulk domains. Due to the oscillations within the layer, we have the combine dimension reduction techniques with methods from the homogenization theory. To cope with these difficulties, we make use of the two-scale convergence in thin heterogeneous layers. However, in our case the diffusion in the thin layer is low and depends nonlinearly on the concentration itself. The low diffusion leads to a two-scale limit depending on a macroscopic and a microscopic variable. Hence, weak compactness results based on standard <i>a priori</i> estimates are not enough to pass to the limit <inline-formula><tex-math id="M4">\begin{document}$ \epsilon \to 0 $\end{document}</tex-math></inline-formula> in the nonlinear terms. Therefore, we derive strong two-scale compactness results based on a variational principle. Further, we establish uniqueness for the microscopic and the macroscopic model.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Analysis,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effective interface conditions for a porous medium type problem;Interfaces and Free Boundaries, Mathematical Analysis, Computation and Applications;2024-02-06

2. Homogenization of a nonlinear drift–diffusion system for multiple charged species in a porous medium;Nonlinear Analysis: Real World Applications;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3