Abstract
<p style='text-indent:20px;'>In this paper we study the maximum number of limit cycles bifurcating from the periodic orbits of the center <inline-formula><tex-math id="M1">\begin{document}$ \dot x = -y((x^2+y^2)/2)^m, \dot y = x((x^2+y^2)/2)^m $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M2">\begin{document}$ m\ge0 $\end{document}</tex-math></inline-formula> under discontinuous piecewise polynomial (resp. polynomial Hamiltonian) perturbations of degree <inline-formula><tex-math id="M3">\begin{document}$ n $\end{document}</tex-math></inline-formula> with the discontinuity set <inline-formula><tex-math id="M4">\begin{document}$ \{(x, y)\in\mathbb{R}^2: xy = 0\} $\end{document}</tex-math></inline-formula>. Using the averaging theory up to any order <inline-formula><tex-math id="M5">\begin{document}$ N $\end{document}</tex-math></inline-formula>, we give upper bounds for the maximum number of limit cycles in the function of <inline-formula><tex-math id="M6">\begin{document}$ m, n, N $\end{document}</tex-math></inline-formula>. More importantly, employing the higher order averaging method we provide new lower bounds of the maximum number of limit cycles for several types of piecewise polynomial systems, which improve the results of the previous works. Besides, we explore the effect of 4-star-symmetry on the maximum number of limit cycles bifurcating from the unperturbed periodic orbits. Our result implies that 4-star-symmetry almost halves the maximum number.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Reference29 articles.
1. V.I. Arnold, Ten problems, Adv. Soviet Math. 1 (1990), 1–8.
2. I. S. Berezin and N. P. Zhidkov, Computing Methods, Reading, Mass. London, 1965.
3. M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical systems: Theory and Applications, Applied Mathematical Sciences, Springer Verlag, London, 2008.
4. A. Buic${\rm\breve{a}}$, J. Giné and J. Llibre, Bifurcation of limit cycles from a polynomial degenerate center, Adv. Nonlinear Stud., 10 (2010), 597–609.
5. C. A. Buzzi, M. F. S. Lima and J. Torregrosa, Limit cycles via higher order perturbations for some piecewise differential systems, Physica D, 371 (2018), 28–47.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献