Abstract
<p style='text-indent:20px;'>By means of the method of moving planes, we study the monotonicity of positive solutions to degenerate quasilinear elliptic systems in half-spaces. We also prove the symmetry of positive solutions to the systems in strips by using similar arguments. Our work extends the main results obtained in [<xref ref-type="bibr" rid="b16">16</xref>,<xref ref-type="bibr" rid="b20">20</xref>] to the system, in which substantial differences with the single cases are presented.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Reference26 articles.
1. A. D. Alexandrov.A characteristic property of spheres, Ann. Mat. Pura Appl., 58 (1962), 303-315.
2. H. Berestycki, L. A. Caffarelli, L. Nirenberg.Monotonicity for elliptic equations in unbounded Lipschitz domains, Commun. Pure Appl. Math., 50 (1997), 1089-1111.
3. H. Berestycki, L. Nirenberg.On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1-37.
4. H. Berestycki, L. Caffarelli, L. Nirenberg.Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 69-94.
5. M. F. Bidaut-Véron, R. Borghol, L. Véron.Boundary Harnack inequality and a priori estimates of singular solutions of quasilinear elliptic equations, Calc. Var. Partial Differ Equ, 27 (2006), 159-177.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献