Abstract
<abstract><p>In this paper, all simple Yetter-Drinfeld modules and indecomposable projective Yetter-Drinfeld modules over the $ 2 $-rank Taft algebra $ \mathcal{\bar{A}} $ are construted and classified by Radford's method of constructing Yetter-Drinfeld modules over a Hopf algebra. Furthermore, the projective class ring of the category of Yetter-Drinfeld modules over $ \mathcal{\bar{A}} $ is described explicitly by generators and relations.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference28 articles.
1. N. Andruskiewitsch, H. J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of order$p^3$, J. Algebra, 209 (1998), 658–691. http://doi.org/10.1006/jabr.1998.7643
2. D. N. Yetter, Quantum groups and representations of monoidal categories, Math. Proc. Cambridge, 108 (1990), 261–290. http://doi.org/10.1017/S0305004100069139
3. N. Andruskiewitsch, H. J. Schneider, Finite quantum groups and Cartan matrices, Adv. Math., 154 (2000), 1–45. http://doi.org/10.1006/aima.1999.1880
4. N. Andruskiewitsch, H. J. Schneider, Pointed Hopf algebras, in New Directions in Hopf algebras, Cambridge: Cambridge University Press, (2002), 1–68.
5. N. Andruskiewitsch, H. J. Schneider, On the classification of finite dimensional pointed Hopf algebras, Ann. Math., 171 (2010), 375–417. http://doi.org/10.4007/annals.2010.171.375