Abstract
<abstract><p>In this paper, we study the number of the Lehmer primitive roots solutions of a multivariate linear equation and the number of $ 1\leq x\leq p-1 $ such that for $ f(x)\in {\mathbb{F}}_p[x] $, $ k $ polynomials $ f(x+c_1), f(x+c_2), \ldots, f(x+c_k) $ are Lehmer primitive roots modulo prime $ p $, and obtain asymptotic formulae for these utilizing the properties of Gauss sums and the generalized Kloosterman sums.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference18 articles.
1. E. Vegh, A note on the distribution of the primitive roots of a prime, J. Number Theory, 3 (1971), 13–18. https://doi.org/10.1016/0022-314X(71)90046-1
2. R. Guy, Unsolved Problems in Number Theory, 3rd ed., Problem Books in Mathematics, Springer-Verlag, New York, 2004. https://doi.org/10.1007/978-0-387-26677-0_2
3. S. Cohen, Consecutive primitive roots in a finite field, Proc. Amer. Math. Soc., 93 (1985), 189–197. https://doi.org/10.1090/S0002-9939-1985-0770516-9
4. S. Golomb, Algebraic constructions for Costas arrays, J. Combin. Theory Ser. A, 37 (1984), 13–21. https://doi.org/10.1016/0097-3165(84)90015-3
5. Q. Sun, On primitive roots in a finite field (Chinese, with English summary), Sichuan Daxue Xuebao, 25 (1988), 133–139.