Evaluation of nanostructured electrode materials for high-performance supercapacitors using multiple-criteria decision-making approach

Author:

Hezam Ibrahim M.1,Al-Syadi Aref M.23,Foul Abdelaziz1,Alshamrani Ahmad1,Gwak Jeonghwan4567

Affiliation:

1. Department of Statistics & Operations Research, College of Sciences, King Saud University, Riyadh, Saudi Arabia

2. Department of Physics, Najran University, Najran, Saudi Arabia

3. Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran, Saudi Arabia

4. Department of Software, Korea National University of Transportation, Chungju 27469, Korea

5. Department of Biomedical Engineering, Korea National University of Transportation, Chungju 27469, Korea

6. Department of AI Robotics Engineering, Korea National University of Transportation, Chungju 27469, Korea

7. Department of IT & Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea

Abstract

<abstract> <p>The enhancement of electrode materials' properties for improving mercantile supercapacitors' performances is a remarkable research area. Throughout recent years, a significant amount of research has been devoted to improving the electrochemical performance of supercapacitors via the improvement of novel electrode materials. The nanocomposite structure provides a greater specific surface area (SSA) and lower ion/electron diffusion tracks, consequently enhancing supercapacitors' energy density and specific capacitance. These significant properties offer a wide range of potential for the electrode materials to be applied in diverse applications. For instance, their applications are in portable electronic systems such as all-solid-state supercapacitors, flexible/transparent supercapacitors and hybrid supercapacitors. The authors of this paper introduced a multi-criteria model to assess the priority of nanostructured electrode materials (NEMs) for high-performance supercapacitors (HPSCs). This work combines Analytic Hierarchy Process (AHP) with the Evaluation Based on Distance from Average Solution (EDAS) and Grey Relational Analysis (GRA) methods. Herein, the rough concept addresses the uncertainties resulting from the group decision-making process and the vague values of the properties of the NEMs. The modified R-AHP method was employed to find the criteria weights based on the multi-experts' opinions. The results reveal that specific capacitance (SC) and energy density (ED) are the most important criteria. R-AHP was integrated with R-EDAS and R-GRA models to evaluate the fourteen NEMs. The results of the R-EDAS method were compared with those provided by the R-GRA method. The results of the proposed integrated approach confirmed that it results in reliable and reputable ranks that will provide a framework for further applications and help physicists find optimal materials by evaluating various alternatives.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3