Huizhou GDP forecast based on fractional opposite-direction accumulating nonlinear grey bernoulli markov model

Author:

Qiu Meilan12,Li Dewang2,Luo Zhongliang3,Yu Xijun4

Affiliation:

1. Division of Applied and Computational Mathematics, Beijing Computational Science Research Center, Beijing 100193, China

2. School of Mathematics and Statistics, Huizhou University, Guangdong, Huizhou 516007, China

3. School of Electronic and Information Engineering, Huizhou University, Guangdong, Huizhou 516007, China

4. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

Abstract

<abstract><p>In this paper, a fractional opposite-direction accumulating nonlinear grey Bernoulli Markov model (FOANGBMKM) is established to forecast the annual GDP of Huizhou city from 2017 to 2021. The optimal fractional order number and nonlinear parameters of the model are determined by particle swarm optimization (PSO) algorithm. An experiment is provided to validate the high fitting accuracy of this model, and the effect of prediction is better than that of the other four competitive models such as autoregressive integrated moving average model (ARIMA), grey model (GM (1, 1)), fractional accumulating nonlinear grey Bernoulli model (FANGBM (1, 1)) and fractional opposite-direction accumulating nonlinear grey Bernoulli model (FOANGBM (1, 1)), which proves the robustness of the opposite-direction accumulating nonlinear Bernoulli Markov model. This research will provide a scientific basis and technical references for the economic planning industries.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference40 articles.

1. Y. C. Yao, Analysis of Economic Factors affecting GDP Growth, Master's Thesis, Harbin Institute of Technology in Harbin, 2014.

2. X. Z. Hao, S. Y. Li, Modeling and forecasting of GDP time series in China, Stat. Decis., 23 (2007), 4–6.

3. T. Liu, W. M. Yang, R. T. Hu, An empirical study on quarterly GDP forecasting of mixed frequency data based on AIC criterion, Stat. Theory Pract., 6 (2021), 26–33. https://doi.org/10.13999/j.cnki.tjllysj.2021.06.006

4. W. G. Wang, Y. Yu, Short-term prediction of quaeterly GDP in China based on MIDAS regression model, J. Quant. Technol. Econ., 33 (2016), 108–125. https://doi.org/10.13653/j.cnki.jqte.2016.04.008

5. M. Zhang, Y. G. Dang, The application of combined forecast model base on wavelets on the predict of Nanjing's GDP, Math. Pract. Theory, 48 (2018), 111–118.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3