A construction method of urban road risky vehicles based on dynamic knowledge graph

Author:

Zhang Yongmei1,Du Zhirong12,Hu Lei3

Affiliation:

1. School of Computer Science and Technology, North China University of Technology, Beijing 100144, China

2. School of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China

3. School of Computer Information Engineering, Jiangxi Normal University, Jiangxi 330022, China

Abstract

<abstract> <p>The growth of the Internet of Things makes it possible to share information on risky vehicles openly and freely. How to create dynamic knowledge graphs of continually changing risky vehicles has emerged as a crucial technology for identifying risky vehicles, as well as a research hotspot in both artificial intelligence and field knowledge graphs. The node information of the risky vehicle knowledge graph is not rich, and the graph structure plays a major role in its dynamic changes. The paper presents a fusion algorithm based on relational graph convolutional network (R-GCN) and Long Short-Term Memory (LSTM) to build the dynamic knowledge graph of risky vehicles and conducts a comparative experiment on the link prediction task. The results showed that the fusion algorithm based on R-GCN and LSTM had better performance than the other methods such as GCN, DynGEM, ROLAND, and RE-GCN, with the MAP value of 0.2746 and the MRR value of 0.1075. To further verify the proposed algorithm, classification experiments are carried out on the risky vehicle dataset. Accuracy, precision, recall, and F-values were used as heat-tolerance evaluation indexes in classification experiments, the values were 0.667, 0.034, 0.422, and 0.52 respectively.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference42 articles.

1. Made in China 2025, Issued by the State Council.

2. Y. C. Zou, Construction and Application of Traffic Knowledge Graph Based on Multi-source Data Fusion (in Chinese), Master's thesis, Dalian University of Technology, 2020. Available from: https://cdmd.cnki.com.cn/Article/CDMD-10141-1020653436.htm.

3. L. Wang, Research on Intelligent Knowledge Support of Urban Rail Transit Construction Safety Management Based on Knowledge Graph (in Chinese), Ph.D thesis, China University of Mining and Technology, 2019. https://doi.org/10.27623/d.cnki.gzkyu.2019.000408

4. G. L. Zhou, Research on Prediction of Urban Traffic Congestion Area Based on Knowledge Graph and Deep Learning (in Chinese), Master's thesis, University of Science and Techno-logy of China, 2019. Available from: https://kns.cnki.net/kcms2/article/abstract?v = 3uoqIhG8C475KOm_zrgu4lQARvep2SAkOsSuGHvNoCRcTRpJSuXuqaqG2zp1ftApp1d23kvjOO2oSeVFvORibKCV9PhY0Iws & uniplatform = NZKPT & src = copy.

5. M. Zhou, Study on Vehicle Lane Change Risk Situation Based on Driving Behavior and Driving Style Inclination (in Chinese), Chang'an University, 2022. https://doi.org/10.26976/d.cnki.gchau.2022.000496

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3