Optimum configuration of a dispatchable hybrid renewable energy plant using artificial neural networks: Case study of Ras Ghareb, Egypt

Author:

Hamdi Mohamed,El Salmawy Hafez A.,Ragab Reda

Abstract

<abstract> <p>The present paper examines the potential hybridization for a dispatchable hybrid renewable energy system (HRES). The plant has been examined for existence in the city of Ras Ghareb, Egypt and follows the load profile of Egypt. The proposed plant configuration contains a wind plant, a solar photovoltaic plant, vanadium redox flow batteries (VRFBs) and a hydrogen system consisting of an electrolyzer, hydrogen tanks and fuel cells (FCs), the latter of which are for both daily and seasonal storage. Professional software tools have been used to model the wind and solar resources. Simulations for both the battery and hydrogen generation and electrolyzer operation are also considered. The output of these simulations is used to configure the HRES using MATLAB. The optimization objective function of the HRES is based on the least levelized cost of energy (LCOE) with constraints for a zero loss of power supply probability (LPSP) and curtailed energy. The optimization has been achieved by using artificial neural networks and a MATLAB program. The results show that the optimal system can handle 91.2% of the load directly from the renewable energy sources (wind and solar), while the rest of the demand comes from the storage system (FCs and VRFBs). The LCOE of the optimal system configuration is (USD) 9.3 %/kWh, with both the LPSP and curtailed energy at zero values. This cost can be reduced by 14.5% if the constraint of zero curtailed energy is relaxed by 10%. Despite the load being maximum in summer, the energy storage requirement is predicted to be maximum in winter due to the low wind profile and solar radiation in winter months. Energy storage system size is dependent on both seasonal and daily variations in wind and solar profiles. In addition, energy storage size is the main factor that determines the LCOE of the system.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3