Affiliation:
1. LMDC, Toulouse University, INSA, France
2. Faculty of Engineering Technology KU Leuven, Belgium
Abstract
<abstract>
<p>While the retrofitting of the building stock seems to be an effective solution to reach the targets for 2049 greenhouse gas emission, the current rate and quality of work is still too low. This article first proposes a state-of-the-art methodology and a brief description of the barriers to renovation. The literature review identifies 26 major issues. Then, the one stop shops (OSS), which are introduced as a solution to these barriers, are described under different aspects according to their business model, the type of project owner targeted and the kind of services they offer with their support. Drawing on previous literature, this article proposes a classification framework. Then a comprehensive benchmark of 63 OSSs in Europe was conducted, allowing for a comparative analysis of the distribution of OSSs models across various countries and territories; it highlights the existing need in all countries, but also the disparity of support being provided. This examination revealed that selecting an appropriate OSS model cannot be solely based on factors like scope, ownership, or the existence of other OSSs. In the final section, a correlation study is made between several criteria (energy consumption and type, urbanization rate, construction date, climatic context, renovation rate etc.) that have been identified as being potentially indicative of renovation activities. The objective of this work is to provide an overview of the current context and emphasize effective strategies to accelerate the pace of renovation. By identifying and addressing the unique needs and challenges in each specific context, the goal is to promote efficient and streamlined renovation processes.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Reference54 articles.
1. European Comission (2022) Energy efficient buildings, energy topics, 2022. Available from: https://ec.europa.eu/energy/topics/energy-strategy/2029-energy-%20strategy_en?redir = 1.
2. European Commission (2023) Comprehensive study of building energy renovation activities and the uptake of nearly zero-energy buildings in the EU: final report. LU, Publications Office.
3. Desogus G, Di Pilla L, Mura S, et al. (2013) Economic efficiency of social housing thermal upgrade in Mediterranean climate. Energy Buildings 56: 353–349. https://doi.org/10.1016/j.enbuild.2012.11.016
4. Ma Z, Cooper P, Daly D, et al. (2012) Existing building retrofits: Methodology and state-of-the-art. Energy Buildings 54: 889–902. https://doi.org/10.1016/j.enbuild.2012.08.018
5. Ionescu C, Baracu T, Vlad G-E, et al. (2015) The historical evolution of the energy efficient buildings. Renewable Sustainable Energy Rev 48: 242–252. https://doi.org/10.1016/j.rser.2015.04.062
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献