Estimation of most optimal azimuthal angles for maximum PV solar efficiency using multivariate adaptive regression splines (MARS)

Author:

Sahin Gokhan,Van Wilfried Sark W.G.J.H.M.

Abstract

<abstract> <p>The aim of this study was to build a regression model of solar irradiation in the Kulluk region of Turkey by using the multivariate adaptive regression splines (MARS) technique. Using the well-known data mining algorithm, MARS, this study has explored a convenient prediction model for continuous response variables, i.e., average daily energy production from the given system (Ed), average monthly energy production from given system (Em), average daily sum of global irradiation per square meter (Hd) and average annual sum of global irradiation per square meter (Hm). Four continuous estimators are included to estimate Ed, Em, Hd and Hm: Estimated losses due to temperature and low irradiance (ESLOTEM), estimated loss due to angular reflection effect (ESLOANGREF), combined photovoltaic system loss (COMPVLOSS) and rated power of the photovoltaic system (PPVS). Four prediction models as constructed by implementing the MARS algorithm, have been obtained by applying the smallest generalized cross-validation (GCV) criterion where the means of penalty are defined as 1 and the backward pruning method for the package "earth" of R software is used. As a result, it can be suggested that the procedure of the MARS algorithm, which achieves the greatest predictive accuracy of 100% or nearly 100%, permits researchers to obtain some remarkable hints for ascertaining predictors that affect solar irradiation parameters. The coefficient of determination denoted as R<sup>2</sup> was estimated at the highest predictive accuracy to be nearly 1 for Ed, Em, Hd and Hm while the GCV values were found to be 0.000009, 0.018908, 0.000013 and 0.019021, respectively. The estimated results indicate that four MARS models with the first degree interaction effect have the best predictive performances for verification with the lowest GCV value.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3