Numerical investigation and improvement of the aerodynamic performance of a modified elliptical-bladed Savonius-style wind turbine

Author:

Kurniati Sri1,Syam Sudirman1,Sanusi Arifin2

Affiliation:

1. Department of Electrical Engineering, Faculty of Science and Technology, Nusa Cendana University, Kupang-NTT, 85228, Indonesia

2. Department of Mechanical Engineering, Faculty of Science and Technology, Nusa Cendana University, Jl. Adisucipto, Penfui-Kupang-NTT, 85228, Indonesia

Abstract

<abstract> <p>The Savonius turbine has an advantage over other types of vertical axis wind turbines (VAWT), which have speeds ranging from the lowest wind speed to the highest. However, the main problem is the negative torque on the rotary blades. This paper used computational fluid dynamics to numerically investigate the two-dimensional flow analysis of a modified elliptical Savonius wind turbine. This study investigated and compared five rotor blades: Classic, elliptical, and their three modifications. The behavior of wind energy was studied explicitly by changing the angle of the axis of the elliptical blade from the concave side, which leads to a convex shape to increase the area affected by the thrust force and increase the positive torque. The ANSYS (previously known as STASYS Structural Analysis System) Fluent version 15 software solves the unstable Reynolds-Naiver-Stokes (URAN) equation. The coupling algorithm solves the pressure-based coupling pressure velocity using the ANSYS Fluent. In the simulation, the drag, lift, and moment coefficients on the Savonius turbine were calculated directly at each change in the axis angle. The test results at wind speeds of up to nine m/s showed that the modified elliptical turbine with an axis angle of 50° had the highest coefficient power (Cp) among other elliptical blade modifications. In comparison, the test results with variations in wind speeds of 4–12 m/s showed that turbines with an axis angle of 55° performed better with a higher tip speed ratio (TSR) than other models.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3