Analysis of meteorological drought periods based on the Standardized Precipitation Evapotranspiration Index (SPEI) using the Power Law Process approach

Author:

Auliana Nur Hikmah,Sunusi Nurtiti,Herdiani Erna Tri

Abstract

<p>In recent decades, abnormal rainfall and temperature patterns have significantly impacted the environment and human life, particularly in East Nusa Tenggara. The region is known for its low rainfall and high temperatures, making it vulnerable to drought events, which have their own complexities due to being random and changing over time. This study aimed to analyze the trend of short-term meteorological drought intensity in Timor Island, East Nusa Tenggara. The analysis was carried out by utilizing the standardized precipitation evapotranspiration index (SPEI) for a 1-month period to characterize drought in intensity, duration, and severity. A power law process approach was used to model the intensity of the event, which is inversely proportional to the magnitude of the drought event. Intensity parameters of the power law process were estimated using the maximum likelihood estimation (MLE) method to predict an increase in the intensity of drought events in the future. The probability of drought was calculated using the non-homogeneous Poisson process. The analysis showed that "extremely dry" events in Timor Island are less frequent than "very dry" and "dry" events. The power law process model's estimated intensity parameter showed a beta value greater than 1, indicating an increase in future drought events. In the next 12 months, two months of drought are expected in each region of Timor Island, East Nusa Tenggara, with the following probabilities for each region: 0.264 for Kupang City, 0.25 for Kupang, 0.265 for South Central Timor, 0.269 for North Central Timor, 0.265 for Malaka, and 0.266 for Belu. This research provides important insights into drought dynamics in vulnerable regions such as East Nusa Tenggara and its potential impact on future mitigation and adaptation planning.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3