Numerical and statistical analysis of auxiliary geometrical parameter effects on piano key weir discharge capacity

Author:

Kumar Binit1,Ahmad Rahil2,Pandey Manish3,Kumar Gupta Anil4

Affiliation:

1. Department of Civil Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj

2. Water Resources Engineering and Management, University of Stuttgart

3. Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal-721302 India

4. International & National Cooperation, Advisory Services, Public Policy, Planning & Strategic management, National Institute of Disaster Management, New Delhi 110042 India

Abstract

<p>Nowadays, piano key (PK) weir with an expanded crest length are often used to deal with surplus discharge in dams due to unexpected climate change effects, increasing safety. The present study deals with the numerical modelling of a group of PK weirs with auxiliary geometrical parameters to predict the flow over a PK weir using different FLOW-3D turbulence models. The numerical outcomes were compared with the experimental results to check the accuracy of the underlying FLOW-3D models. It was found that the k-<italic>𝜀</italic> turbulence model of FLOW-3D estimated the flow over a piano key weir more closely to the experimental results than the RNG (renormalized group) and LES (large eddy simulation) models. Statistical parameters were used to evaluate the simulated results. It was observed that the coefficient of correlation (CC) was close to one and the root mean square error (RMSE) close to zero when numerical outcomes were compared with experimental datasets. The results show that the FLOW-3D software is quite effective in estimating the flow. Therefore, the present study will help to understand the best combination of mesh, models, adaption and convergence processes in simulation and provide an insight into the numerical analysis of flow configuration over PKW by considering one of the best numerical models.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3