A comprehensive bi-objective optimization model to design circular supply chain networks for sustainable electric vehicle batteries

Author:

Meraj Afshin1,Shoa Tina1,Naieni Fard Fereshteh Sadeghi2,Mina Hassan3

Affiliation:

1. College of Engineering and Computing Sciences, Vancouver Campus, New York Institute of Technology, Vancouver, Canada

2. Department of information Science, University of North Texas, Denton, TX76207, USA

3. Prime School of Logistics, Saito University College, Petaling Jaya, Selangor, Malaysia

Abstract

<abstract> <p>As electric vehicles (EVs) continue to advance, there is a growing emphasis on sustainability, particularly in the area of effectively managing the lifecycle of EV batteries. In this study, an efficient and novel optimization model was proposed for designing a circular supply chain network for EV batteries. In doing so, a comprehensive, bi-objective, mixed-integer linear programming model was employed. It is worth noting that the current model outlined in this paper involved both forward and reverse flows, illustrating the process of converting used batteries into their constituent materials or repurposing them for various applications. In line with the circular economy concept, the current model also minimized the total costs and carbon emission to develop an inclusive optimization framework. The LP-metric method was applied to solve the presented bi-objective optimization model. We simulated six problems with different sizes using data and experts' knowledge of a lithium-ion battery manufacturing industry in Canada, and evaluated the performance of the proposed model by simulated data. The results of the sensitivity analysis process of the objective functions coefficients showed that there was a balance between the two objective functions, and the costs should be increased to achieve lower emissions. In addition, the demand sensitivity analysis revealed that the increase in demand directly affects the increase in costs and emissions.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3