A spectral study of the linearized Boltzmann operator in $ L^2 $-spaces with polynomial and Gaussian weights

Author:

Gervais Pierre

Abstract

<p style='text-indent:20px;'>The spectrum structure of the linearized Boltzmann operator has been a subject of interest for over fifty years and has been inspected in the space <inline-formula><tex-math id="M2">\begin{document}$ L^2\left( {\mathbb R}^d, \exp(|v|^2/4)\right) $\end{document}</tex-math></inline-formula> by B. Nicolaenko [<xref ref-type="bibr" rid="b27">27</xref>] in the case of hard spheres, then generalized to hard and Maxwellian potentials by R. Ellis and M. Pinsky [<xref ref-type="bibr" rid="b13">13</xref>], and S. Ukai proved the existence of a spectral gap for large frequencies [<xref ref-type="bibr" rid="b33">33</xref>]. The aim of this paper is to extend to the spaces <inline-formula><tex-math id="M3">\begin{document}$ L^2\left( {\mathbb R}^d, (1+|v|)^{k}\right) $\end{document}</tex-math></inline-formula> the spectral studies from [<xref ref-type="bibr" rid="b13">13</xref>,<xref ref-type="bibr" rid="b33">33</xref>]. More precisely, we look at the Fourier transform in the space variable of the inhomogeneous operator and consider the dual Fourier variable as a fixed parameter. We then perform a precise study of this operator for small frequencies (by seeing it as a perturbation of the homogeneous one) and also for large frequencies from spectral and semigroup point of views. Our approach is based on Kato's perturbation theory for linear operators [<xref ref-type="bibr" rid="b22">22</xref>] as well as enlargement arguments from [<xref ref-type="bibr" rid="b25">25</xref>,<xref ref-type="bibr" rid="b19">19</xref>].</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Modelling and Simulation,Numerical Analysis

Reference36 articles.

1. R. Alonso, I. M. Gamba and M. Tasković, Exponentially-tailed regularity and time asymptotic for the homogeneous Boltzmann equation, preprint, arXiv: 1711.06596.

2. R. Alonso, B. Lods and I. Tristani, Fluid dynamic limit of Boltzmann equation for granular hard-spheres in a nearly elastic regime, preprint, arXiv: 2008.05173.

3. R. Alonso, Y. Morimoto, W. Sun, T. Yang.Non-cutoff Boltzmann equation with polynomial decay perturbations, Rev. Mat. Iberoam., 37 (2021), 189-292.

4. R. J. Alonso, V. Bagland, B. Lods.Convergence to self-similarity for ballistic annihilation dynamics, J. Math. Pures Appl. (9), 138 (2020), 88-163.

5. C. Baranger, C. Mouhot.Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana, 21 (2005), 819-841.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3