Synthesis of sulfide mineral crystals by incongruent methods using the example of Cu-Fe-S and Cu-Fe-Se systems

Author:

Puzanova I. G.1,Pankrushina E. A.2,Pechurin M. S.3,Chareev D. A.4

Affiliation:

1. National University of Science and Technology “MISIS”; D.S. Korzhinsky Institute of Experimental Mineralogy, RAS

2. A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS; Institute of Physics and Technology of the Ural Federal University

3. A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS

4. D.S. Korzhinsky Institute of Experimental Mineralogy, RAS; State University “Dubna”; Institute of Physics and Technology of the Ural Federal University; Kazan Federal University

Abstract

Research subject. Understanding the structure and thermodynamic properties of sulfide minerals is important for studying the paragenesis of sulfide formation on Earth and in space, as well as for analyzing technological issues in the processing of ores and polysulfide product concentrates. There is a lack of experimental and theoretical information on many representatives of the Cu-Fe-S and Cu-Fe-Se systems. Aim. To synthesize crystals in the Cu-Fe-S and Cu-Fe-Se systems at the lowest possible temperatures for the subsequent study of their physical properties, while solving the main problem of materials science related to interrelations between composition, structure, and properties. Materials and methods. Crystal synthesis was carried out by the solution-melt method in a stationary temperature gradient, in evacuated sealed quartz glass ampoules. Two types of ampoules were used in the experiment, standard and long. The ampoules were filled with a charge and a salt mixture of RbCl-LiCl of eutectic composition, evacuated and sealed, then placed in several quartz or ceramic glasses. The glasses were placed in tubular furnaces such that the ends of the ampoules with the charge were located closer to the center of the furnace, and the opposite ends were closer to the edge to create a temperature gradient. For standard ampoules, the hot end temperature was 520–469℃, and the cold end was 456–415℃. For long ones: 470℃ – hot end and 340℃ – cold. The synthesis duration ranged from three to four months. Results. Depending on the composition of the charge, crystals of chalcocine Cu2S, bornite Cu5FeS4, chalcopyrite CuFeS2, isocubanite CuFe2S3, and iron-containing dicopper sulfide with an iron content of up to 8 at % and various equilibrium associations with their participation and with the participation of pyrite FeS2 and pyrrhotites Fe1–xS were obtained. Copper dendrites were also found in some samples. In addition, crystals of a phase with the approximate composition of CuFeSe2 were obtained. It is shown that due to different combinations of oxidation states of all three elements dissolved in a salt electrolyte, it is possible to obtain phases with almost any stoichiometric ratio. Chalcopyrite and isocubanite are reliably detected using Raman spectroscopy. In this case, some samples are locally characterized by the “absence” of a spectrum, which probably indicates the metallic (semi-metallic) properties of the samples. Conclusion. Using the Cu-Fe-S and Cu-Fe-Se systems as an example, the possibility of obtaining sulfide crystals in a RbCl-LiCl salt melt up to a eutectic temperature of 313℃ is shown. Due to the low synthesis temperature, the synthesis should be carried out over several months, resulting in crystals a fraction of a millimeter in size.

Publisher

IGG UB RAS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3