Abstract
BACKGROUND Digital radiography has been used to evaluate the progress of bone growth with a collagen-hydroxyapatite implant in rabbit tibias. This study aimed to introduce digital radiography methods that provide comprehensive data availability for continuous information retrieval from the implant preparation to the cultivation period.
METHODS 38 digital radiographs were divided into 3 treatment groups, namely a single defect without implant (control), single-implant, and three-implant. Radiographic acquisitions were performed at preparation time and post-implantation from 0 to 56 days. Observations were concentrated on the implantation site, followed by creating a lateral profile. The prediction of implantation growth was determined using relative bone density (RBD) percentage.
RESULTS Based on the profile, the recovery process consisted of implant absorption and new bone tissue deposition. The absorption process was highly influenced by the defect size. In the control and single-implant groups, regardless of the different recovery processes, similar recovery results were observed 56 days post-implantation, with an RBD value of approximately 90%. Meanwhile, the three-implant group only had an RBD value of 62%.
CONCLUSIONS Radiography can evaluate absorption and new bone growth during implantation in New Zealand white rabbits. Radiographs, which can be obtained at any time during cultivation, offered more information on the recovery implantation process than the other method that relies on data obtained after sacrificing the animals.
Publisher
Faculty of Medicine, Universitas Indonesia
Reference17 articles.
1. Wong JY, Bronzino JD, Peterson DR, editors. Biomaterials: principles and practices. 2nd ed. Boca Raton: CRC Press; 2013. https://doi.org/10.1201/b13687
2. Knop C, Sitte I, Canto F, Reinhold M, Blauth M. Successful posterior interlaminar fusion at the thoracic spine by sole use of beta-tricalcium phosphate. Arch Orthop Trauma Surg. 2006;126(3):204-10. https://doi.org/10.1007/s00402-006-0107-8
3. Mahyudin F. [Bone graft and bone replacement materials: characteristics and clinical application strategies]. Utomo DN, editor. Surabaya: Airlangga University Press; 2018. Indonesian.
4. Hartono SA. [Intradermal Irritation test and radiography density of HA:Ce-Zn bone graft in femoral bone and muscle of Sprague Dawley rats] [thesis]. Bogor: IPB Unversity; 2021. Indonesian.
5. Rémi E, Khelil N, Di Centa I, Roques C, Ba M, Medjahed-Hamidi F, et al. Pericardial processing: challenges, outcomes and future prospects, biomaterials science and engineering. Oxford: INTECH Open Access Publisher; 2011. p. 437-56. In: Pignatello R, editors. Chapter 22, Biomaterials science and engineering. https://doi.org/10.5772/24949