Thermohaline Circulation and Prolonged Interglacial Warmth in the North Atlantic

Author:

McManus Jerry F.,Oppo Delia W.,Keigwin Lloyd D.,Cullen James L.,Bond Gerard C.

Abstract

AbstractDeep-sea sediment cores provide spatially coherent evidence for the climatic and hydrographic conditions in the subpolar North Atlantic during the last interglaciation. Taken together with similarly high-resolution terrestrial sequences, these records indicate a regional climatic progression, beginning with the extreme and variable climate late in the penultimate glaciation, continuing through a relatively stable climatic optimum during the interglaciation, and concluding with the reestablishment of the markedly variable regime that characterized the last 100,000-yr glaciation. Relatively mild conditions in much of the subpolar region significantly outlasted the minimum in global ice volume, despite declining summer insolation and the cooling influence of incipient proximal glaciers. These effects were partially offset by enhanced thermohaline circulation that paradoxically increased heat transport into the region while simultaneously providing the likely moisture source for the growth of large northern ice sheets. The inception of the last glacial cycle thus provides an example of the influence of ocean circulation on regional climate. In contrast to the apparent orbital pace of the ongoing ice-sheet growth, the subsequent deterioration of surface conditions was abrupt and dramatic.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3