Dry sliding wear behavior and its relation to microstructure of artificially aged Al-Si-Mg/TiB2 in situ composites

Author:

Rathod Nishith R,Menghani Jyoti

Abstract

Mechanical stir casting is utilized to produce an artificially aged Al-Si-Mg alloy, whereas halide slat (K2TiF6 and KBF4) synthesis is utilized to produce Al-Si-Mg/TiB2 aluminum matrix composites. The dry sliding pin on disc wear test was conducted using a DUCOM/TR-20LE-PHM-200 machine to simulate an automobile application (Piston-Ring assembly).  Where pistons are made of aluminum alloy (for the Pin) and rings are made of grey cast iron (for the disc material). At room temperature, a wear test was conducted by altering the ageing time (3, 6, 9, 12), sliding speed (2, 2.5 m/s), and applied load (14.71, 19.62, 24.52 N) with the disc speed (500 rpm) held constant (10 min).  The results indicate that the aluminum matrix composite (AMC) wear rate is reduced by 37 percent at higher sliding speeds (2.5 m/s) and by 4 percent at lower sliding speeds (2.0 m/s) compared to the base alloy. Field emission scanning electron microscope-energy dispersive spectroscopy (FESEM-EDS) and X-ray photoelectron spectroscopy (XPS) analysis revealed that the formation of the mechanically mixed layer (MML) or oxidative layers on the worn surfaces reduces the wear rate under conditions of longer ageing time, higher sliding speed, and lower applied load. The research demonstrates that composite wear is a function of sliding velocity, aging period, and applied force. As sliding speed rose from 2 m/s to 2.5 m/s, the wear rate of composites dropped reasonably, yet composites are softer than basic alloys. It is conceivable due to the presence of a considerable amount of MML and the formation of oxidative layers between pins and their equivalents.

Publisher

The Netherlands Press

Subject

Metals and Alloys,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3