ANALYSIS OF THE MIXED BOUNDARY VALUE PROBLEM FOR THE POISSON’S EQUATION

Author:

Ushakov A.L.,

Abstract

The mixed boundary value problem for the Poisson’s equation is examined in a bounded flat domain. The problem is continued in a variational form through the boundary with the Dirichlet condition to a rectangular domain. To solve the continued problem, a modified method of fictitious components in a variational form is formulated. The continued problem in a variational form is considered on a finite-dimensional space. To solve the previous problem, a modified method of fictitious components on a finite-dimensional space is formulated. To solve the continued problem in matrix form, the known method of fictitious components is considered. It is shown that in the method of fictitious components the absolute error in the energy norm converges with the speed of a geometric progression. To generalize the method of fictitious components, a new version of the method of iterative extensions is proposed. The continued problem in matrix form is solved using the method of iterative extensions. It is shown that in the proposed version of the method of iterative extensions, the relative error converges in a norm that is stronger than the energy norm of the problem with a geometric progression rate. The iterative parameters in the specified method are selected using the minimum residual method. The conditions which are sufficient for the convergence of the applied iterative process are indicated. An algorithm which implements the proposed version of the method of iterative extensions is written. In this algorithm, an automated selection of iterative parameters is conducted, and the stopping criterion is established when achieving an estimate of the required accuracy. An example of the application of the method of iterative extensions for solving a particular problem is given. In the calculations, the condition for achieving an estimate of the relative error in the norm that is stronger than the energy norm of the problem is set. However, the relative errors of the obtained numerical solution of the example of the original problem are shown in other ways. For example, the relative error in grid nodes is calculated pointwise. To achieve a relative error of no more than a few percent, just a few iterations are required. Computational experiments confirm the asymptotic optimality of the method obtained in theory.

Publisher

FSAEIHE South Ural State University (National Research University)

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. РАСЧЕТ ИЗГИБА МЕМБРАНЫ НА УПРУГОМ ОСНОВАНИИ;Вестник Ошского государственного университета. Математика. Физика. Техника;2023-12-30

2. АНАЛИЗ БИГАРМОНИЧЕСКИХ МОДЕЛЕЙ МЕТОДАМИ ИТЕРАЦИОННЫХ РАСШИРЕНИЙ;Вестник Ошского государственного университета. Математика. Физика. Техника;2023-06-30

3. Method of Iterative Extensions for Analysis of a Screened Harmonic Systems;Journal of Computational and Engineering Mathematics;2023

4. Analysis of Biharmonic and Harmonic Models by the Methods of Iterative Extensions;Bulletin of the South Ural State University. Series "Mathematical Modelling, Programming and Computer Software";2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3