Affiliation:
1. Consolidated Sciences (CONSCI) Ltd.
2. Agilent Technologies, Inc.
Abstract
Gas chromatography (GC) coupled to inductively coupled plasma–mass spectrometry (ICP-MS) is a powerful and flexible analytical solution that is well-established for measuring organometallic compounds such as organotin, organomercury, and organolead in environmental samples, foodstuffs, and consumer products. GC–ICP-MS is also used for industrial applications, such as monitoring catalyst poisons and environmental contaminant elements in petrochemical processing and plastics manufacturing. The semiconductor industry uses a range of high-purity specialty gases and volatile liquids as precursors in wafer substrate production, and for processes such as plasma etching and deposition of thin films by chemical vapor deposition (CVD). Semiconductor manufacturers are constantly developing new integrated circuit (IC) chips with smaller sizes, higher speeds, lower power consumptions, and greater transistor densities. This trend means that contaminants must be controlled at even lower levels in process chemicals and precursors. In this article, we show how GC–ICP-MS, particularly using triple quadrupole or tandem ICP-MS (ICP-MS/MS), enables determination of the lowest levels of contaminants in the specialty gases and volatile liquids used to make the most advanced electronic devices.
Publisher
Multimedia Pharma Sciences, LLC
Subject
Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference4 articles.
1. Geiger, W. M.; Raynor, M. W.; Eds., Trace Analysis of Specialty and Electronic Gases; John Wiley & Sons Inc., 2013.
2. Linde. Electronic Special Gases Index. https://www.linde.com/ (accessed 2023-07-01)
3. Firor, R. L.; Zuo, N. High-Pressure Liquid Injection Device for Agilent Gas Chromatographs; Agilent publication 5989-6081EN, 2008.
4. Geiger, W. M.; McElmurry, B.; Anguiano, J.; Kelinske, M. Determination of Trace Impurities in Electronic Grade Arsine by GC-ICP-QQQ; Agilent publication 5994-2213EN, 2020.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献