PREDICTING THE LEARNING PATH TO LEARNER’S OPTIMUM COMPREHENSION

Author:

Achi Ifeanyi IsaiahORCID,Agwu Chukwuemeka Odi,Nnamene Christopher Chizoba,Aniobi Sylvester C.,Barnabas C. Ifebude,Oketa Kelechi Christian,Ezeh Godson Kenechukwu,Ugah John Otozi

Abstract

The essence of learning is for the learner to attain a significant level of comprehension after the learning process is completed. The quest to achieve this singular purpose has led to the introduction of several learning techniques  in the conventional learning environment, such as asking questions and conducting test after class, just to mention a few. Additionally, technology has been introduced in learning. Even with technological advancements, the learning experience still faces the challenge of learners not attaining the optimum comprehension state after the learning process. This is due to the present systems' inability to model the learner to determine the best methods for achieving maximum comprehension. Hence, this research paper focuses on deriving an improved mathematical model for predicting the learning path to a learner’s optimum comprehension. The paper presented three learning instructional media (learning paths); textual, audio and a hybrid of audio and video, which this research uses in modelling the learner. This is to enable the improved system predict the best learning path to optimum comprehension for learners. This research paper adopted Reinforcement Learning and the Markov decision process, specifically the Markov Chain approach, in developing an improved model for prediction. The evaluation of this research involved brainstorming on the Bellman’s equation with the aid of the Markov Chain transition state framework, resulting in an improved mean value function of 71.7. This indicates an enhanced comprehension state for the learning students compared to the existing mean value function of 46.0. The results obtained from this research clearly demonstrate that the improved model was able to predict and assign the best learning path to achieve optimum comprehension state for learners.

Publisher

Institute for Digitalisation of Education of the National Academy of Educational Sciences of Ukraine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3