Author:
Ryabtsev S.I.,Sukhova O.V.
Abstract
Al-Cu-Fe and Al-Co-Cu thin films were firstly deposited on sodium chloride or glass-ceramic substrates by modernized method of three-electrode ion-plasma sputtering. The nominal compositions of the films were chosen in the regions of quasicrystalline phases formation. The as-sputtered films were typically 85 to 260 nm thick. The films were annealed at temperatures ranging from 873 to 923 K for 10 min…3 h. The structure of films was studied by scanning and transmission electron microscopy and X-ray analysis. Electrical properties were determined by a fourprobe method. The as-deposited Al-Cu-Fe film was found to consist of isolated quasicrystalline nanoparticles of icosahedral i-phase. With substitution of Fe for Co in Al-Co-Cu film, X-ray amorphous phase and only traces of quasicrystalline decagonal D-phase were revealed. After annealing, the films were predominately quasicrystalline due to transformation of metallic phases into quasicrystalline. At the same time, the size of coherent scattering regions for quasicrystals increased by two times from ~ 3 to 6 nm. Measurements of electrical resistivity showed that no phase transformations occurred in Al-Cu-Fe film up to 723 K and in Al-Co-Cu film up to 640 К. With following increase in temperature, electrical resistivity of Al-Cu-Fe film increased by six orders of magnitude (up to 6∙107 Ω/sq). In contrast, electrical resistivity of Al-Co-Cu film decreased by ~ 2 times. After cooling to room temperature, resistivity of Al-Cu-Fe film equaled to ~ 3∙105 Ω/sq and that of Al-Co-Cu film – to 8.7 Ω/sq. We concluded that Al-Cu-Fe thin film is more suitable candidate for application as precise high-ohmic materials.
Publisher
Problems of Atomic Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献