ION-PLASMA DEPOSITION OF THIN QUASICRYSTALLINE Al-Cu-Fe AND Al-Cu-Co FILMS

Author:

Ryabtsev S.I.,Sukhova O.V.

Abstract

Al-Cu-Fe and Al-Co-Cu thin films were firstly deposited on sodium chloride or glass-ceramic substrates by modernized method of three-electrode ion-plasma sputtering. The nominal compositions of the films were chosen in the regions of quasicrystalline phases formation. The as-sputtered films were typically 85 to 260 nm thick. The films were annealed at temperatures ranging from 873 to 923 K for 10 min…3 h. The structure of films was studied by scanning and transmission electron microscopy and X-ray analysis. Electrical properties were determined by a fourprobe method. The as-deposited Al-Cu-Fe film was found to consist of isolated quasicrystalline nanoparticles of icosahedral i-phase. With substitution of Fe for Co in Al-Co-Cu film, X-ray amorphous phase and only traces of quasicrystalline decagonal D-phase were revealed. After annealing, the films were predominately quasicrystalline due to transformation of metallic phases into quasicrystalline. At the same time, the size of coherent scattering regions for quasicrystals increased by two times from ~ 3 to 6 nm. Measurements of electrical resistivity showed that no phase transformations occurred in Al-Cu-Fe film up to 723 K and in Al-Co-Cu film up to 640 К. With following increase in temperature, electrical resistivity of Al-Cu-Fe film increased by six orders of magnitude (up to 6∙107 Ω/sq). In contrast, electrical resistivity of Al-Co-Cu film decreased by ~ 2 times. After cooling to room temperature, resistivity of Al-Cu-Fe film equaled to ~ 3∙105 Ω/sq and that of Al-Co-Cu film – to 8.7 Ω/sq. We concluded that Al-Cu-Fe thin film is more suitable candidate for application as precise high-ohmic materials.

Publisher

Problems of Atomic Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3