PULSED VACUUM-ARC PLASMA SOURCE WITH LASER ARC EXCITATION

Author:

Sysoiev Yu.O.,Shyroky Yu.V.,Fesenko K.V.

Abstract

A method of solution to the issue of contamination of the laser beam input window in pulsed vacuum-arc plasma sources with vacuum arc laser excitation is proposed. The method involves the periodic introduction of energy through an unfocused laser beam into a layer of condensate formed on the surface of the laser beam input window. The focus of such a cleansing laser beam is located outside the vacuum chamber, ensuring the absence of unauthorized activation of the plasma source, and the optical axis is perpendicular to the input window surface, providing optimal conditions for removing the formed condensate film. The periodicity of cleansing the laser beam input window, which determines the window throughput, is based on the condition of ensuring the probability of vacuum arc excitation not below a specified level. The area of the cleansing laser beam unfocusing spot Sunf on the laser beam input window surface facing the plasma source cathode is determined under the condition of ensuring the power density q of the laser radiation on the cleansed surface in the range of 104 ≤ q ≤ 105  W/cm2 and the condition Sunf ≥ Sexc, where Sexc is the area of the laser beam spot that excites the vacuum arc discharge on the input window surface facing the plasma source cathode. The vacuum arc excitation in the pulsed plasma source using the proposed method, which allows removing the condensate layer on the laser beam input window, is characterized by a stable 95% probability of exciting the vacuum arc at a pulse repetition frequency of 300 Hz, regardless of the plasma source operating duration.

Publisher

Problems of Atomic Science and Technology

Reference29 articles.

1. R.L. Boxman, D.M. Sanders, Ph.J. Martin (Eds.). Handbook of Vacuum Arc Science and Technology. Noyes Publications, Park Ridge, NJ, USA, 1995, 742 p.

2. А.А. Андреев, Л.П. Саблев, С.Н. Григорьев. Вакуумно-дуговые покрытия. Харьков: ННЦ ХФТИ. 2010, с. 317.

3. И.И. Аксенов, А.А. Андреев, В.А. Белоус и др. Вакуумная дуга: источники плазмы, осаждение покрытий, поверхностное модифицирование. Киев: «Наукова думка», 2012, с. 727.

4. A. Anders. Cathodic Arcs – From Fractal Spots to Energetic Condensation. Springer. Series on Atomic, Optical, and Plasma Physics, 2008, p. 540.

5. Ю.О. Сисоєв. Технологія машинобудування. Забезпечення ефективності процесів отримання вакуумно-дугових покриттів: Монографія. Харків: Нац. аерокосм. ун-т ім. М.Є. Жуковського «Харків. авіац. ін-т», 2021, с. 320.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3