INVESTIGATION OF SPATIAL DISTRIBUTION OF METAL VAPOURS ADMIXTURES IN THE PLASMA OF AN ELECTRIC ARC DISCHARGE

Author:

Murmantsev A.

Abstract

This work focuses on diagnosing the plasma in an electric arc discharge in an argon flow using optical emission spectroscopy. The method employed for determining the population of energy levels and the concentration of metal atoms based on the absolute values of emission intensity is described and validated. The experimental setup includes a spectrograph and an RGB CMOS matrix as the emission registration device. By obtaining the absolute values of the spectral radiances of Cu I lines and considering the axial symmetry of the electric arc discharge, the local radiation intensity of these lines is determined. Radial distributions of copper atom concentrations are then calculated using the absolute values of emission intensities and the radial distribution of the excitation temperature, which is determined using the Boltzmann plots technique. Two methods are employed for calculating the atom concentrations. The first method involves Boltzmann plots based on four spectral lines of Cu I and the corresponding excitation temperature. The second method determines the concentrations directly from the population of copper's energy levels, which are derived from the absolute values of emission intensity of the Cu I spectral lines. The results obtained from these two methods exhibit a coincidence of within 20%, supporting the recommendation of this technique for plasma diagnostics in electric arc discharges.

Publisher

Problems of Atomic Science and Technology

Subject

General Engineering,General Medicine,General Medicine,General Medicine,Immunology and Allergy,General Medicine,General Medicine,General Medicine,General Chemistry,General Earth and Planetary Sciences,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3