Machine learning models in mass appraisal for property tax purposes: a systematic mapping study

Author:

Zilli Carlos AugustoORCID,Bastos Lia CaetanoORCID,Da Silva Liane RamosORCID

Abstract

The use of machine learning models in mass appraisal of properties for tax purposes has been extensively investigated, generating a growing volume of primary research. This study aims to provide an overview of the machine learning techniques used in this context and analyze their accuracy. We conducted a systematic mapping study to collect studies published in the last seven years that address machine learning methods in the mass appraisal of properties. The search protocols returned 332 studies, of which 22 were selected, highlighting the frequent use of Random Forest and Gradient Boosting models in the last three years. These models, especially Random Forest, have shown predictive superiority over traditional appraisal methods. The measurement of model performance varied among the studies, making it difficult to compare results. However, it was observed that the use of machine learning techniques improves accuracy in mass property appraisals. This article advances the field by summarizing the state of the art in the use of machine learning models for mass appraisal of properties for tax purposes, describing the main models applied, providing a map that classifies, compares, and evaluates the research, and suggesting a research agenda that identifies gaps and directs future studies.

Publisher

Firenze University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3