Biogenic synthesis of noble metal nanoparticles using Melissa officinalis L. and Salvia officinalis L. extracts and evaluation of their biosafety potential

Author:

Manolescu DenisaORCID,Uță GeorgianaORCID,Șuțan AncaORCID,Ducu CătălinORCID,Din Alin,Moga SorinORCID,Negrea DenisORCID,Biță AndreiORCID,Bejenaru Ludovic,Bejenaru Cornelia,Avram SperanțaORCID

Abstract

In this study we targeted the noble metal nanoparticles (MNPs) biogenic synthesis capacity of two medicinal species with therapeutic potential, namely Melissa officinalis L. (lemon balm) and Salvia officinalis L. (sage), cultivated in Romania. Plant material was extracted by maceration, microwave assisted extraction (MAE) and ultrasound assisted extraction (UAE). Bright field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy (BFSTEM-EDS) techniques were used in order to investigate particles shape, dispersion and chemical elemental analysis. The total polyphenol content for both simple extracts and nanostructured mixtures was determined using the Folin-Ciocalteu method and antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Identification and quantification of secondary metabolites of M. officinalis and S. officinalis were performed by ultra-high performance liquid chromatography (UHPLC). The Allium assay was used to evaluate the potential cytogenotoxic activity, for both simple and nanostructured phytochemical complexes, in the case of S. officinalis L. species being performed for the first time. Spherical shaped MNPs with diameters of about 20 nm were biosynthesised in lemon balm extracts. Larger AuNPs were phytosynthesized in sage extract obtained by UAE. Compared to the simple extracts, the antioxidant capacity as well as the amount of total polyphenols in the nanostructured extracts decreased, substantiating the involvement of bioorganic material in the reduction of metal ions. Low frequency of chromosomal aberrations corresponding to crude extracts and extracts supplemented with MNPs, suggest the cytoprotective, antigenotoxic, and safe use of these plant species as potential therapeutic forms in various diseases.

Publisher

Firenze University Press

Subject

General Agricultural and Biological Sciences,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3