Author:
Buring Ricardo,Lipper Dimitri,Kiselev Arthemy V.
Abstract
Kontsevich's graph flows are -- universally for all finite-dimensional affine
Poisson manifolds -- infinitesimal symmetries of the spaces of Poisson
brackets. We show that the previously known tetrahedral flow and the recently
obtained pentagon-wheel flow preserve the class of Nambu-determinant Poisson
bi-vectors $P=[\![
\varrho(\boldsymbol{x})\,\partial_x\wedge\partial_y\wedge\partial_z,a]\!]$ on
$\mathbb{R}^3\ni\boldsymbol{x}=(x,y,z)$ and $P=[\![
[\![\varrho(\boldsymbol{y})\,\partial_{x^1}\wedge\ldots\wedge\partial_{x^4},a_1]\!],a_2]\!]$
on $\mathbb{R}^4\ni\boldsymbol{y}$, including the general case $\varrho
\not\equiv 1$. We detect that the Poisson bracket evolution $\dot{P} =
Q_\gamma(P^{\otimes^{\# Vert(\gamma)}})$ is trivial in the second Poisson
cohomology, $Q_\gamma = [\![ P, \vec{X}([\varrho],[a]) ]\!]$, for the
Nambu-determinant bi-vectors $P(\varrho,[a])$ on $\mathbb{R}^3$. For the global
Casimirs $\mathbf{a} = (a_1,\ldots,a_{d-2})$ and inverse density $\varrho$ on
$\mathbb{R}^d$, we analyse the combinatorics of their evolution induced by the
Kontsevich graph flows, namely $\dot{\varrho} = \dot{\varrho}([\varrho],
[\mathbf{a}])$ and $\dot{\mathbf{a}} =
\dot{\mathbf{a}}([\varrho],[\mathbf{a}])$ with differential-polynomial
right-hand sides. Besides the anticipated collapse of these formulas by using
the Civita symbols (three for the tetrahedron $\gamma_3$ and five for the
pentagon-wheel graph cocycle $\gamma_5$), as dictated by the behaviour
$\varrho(\mathbf{x}') = \varrho(\mathbf{x}) \cdot \det \| \partial \mathbf{x}'
/ \partial \mathbf{x} \|$ of the inverse density $\varrho$ under
reparametrizations $\mathbf{x} \rightleftarrows \mathbf{x}'$, we discover
another, so far hidden discrete symmetry in the construction of these evolution
equations.
Publisher
Centre pour la Communication Scientifique Directe (CCSD)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献